HURRICANE MICHAEL (AL142018) 7–11 October 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Federal Register/Vol. 73, No. 232/Tuesday, December
73182 Federal Register / Vol. 73, No. 232 / Tuesday, December 2, 2008 / Rules and Regulations (subtitle E of the Small Business any person acting subject to the SUPPLEMENTARY INFORMATION: The Regulatory Enforcement Fairness Act of direction or control of a foreign Federal Emergency Management Agency 1996). Therefore, the reporting government or official where such (FEMA) makes the final determinations requirement of 5 U.S.C. 801 does not person is an agent of Cuba or any other listed below for the modified BFEs for apply. country that the President determines each community listed. These modified Paperwork Reduction Act (and so reports to the Congress) poses a elevations have been published in threat to the national security interest of newspapers of local circulation and The Paperwork Reduction Act (PRA) the United States for purposes of 18 ninety (90) days have elapsed since that does not apply to this rule change. See U.S.C. 951; or has been convicted of or publication. The Assistant 44 U.S.C. 3501–3521. The PRA imposes entered a plea of nolo contendere to any Administrator of the Mitigation certain protocol for the ‘‘collection of offense under 18 U.S.C. 792–799, 831, Directorate has resolved any appeals information’’ by government agencies. or 2381, or under section 11 of the resulting from this notification. The Act defines the ‘‘collection of Export Administration Act of 1979, 50 This final rule is issued in accordance information’’ as ‘‘the obtaining, causing U.S.C. app. 2410. with section 110 of the Flood Disaster to be obtained, soliciting, or requiring * * * * * Protection Act of 1973, 42 U.S.C. -
Stream-Temperature Characteristics in Georgia
STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 . 51 iii ILLUSTRATIONS Page Figure 1. Map showing locations of 198 periodic and 22 daily stream-temperature stations, major river basins, and physiographic provinces in Georgia. -
CMOS Bulletin SCMO Volume 38 No. 6 December 2010
ISSN 1195-8898 . CMOS Canadian Meteorological BULLETIN and Oceanographic Society SCMO La Société canadienne de météorologie et December / décembre 2010 Vol.38 No.6 d'océanographie Hurricane IGOR Track with Sea Surface Temperatures Trajectoire de l’ouragan IGOR et les températures de surface de la mer Canadian Meteorological and Oceanographic Society Société canadienne de météorologie et d’océanographie ....from the President’s Desk CMOS Bulletin SCMO Volume 38 No.6 Friends and colleagues: December 2010 — décembre 2010 Canada’s Federal Inside / En Bref Science and Technology (S&T) from the President’s desk / Allocution du président Strategy, as by/par David Fissel page 197 introduced by the present government Cover page description in 2007, provides a Description de la page couverture page 198 framework for Canada’s S&T Highlights of Recent CMOS Meetings page 199 policies. The 2009 Articles government policy Note 1 update speaks of What I Want to Do in Canada “... making Canada a by Doug Wallace page 200 leader in S&T and David Fissel research and a Ode to a Mackerel Sky by Chris Murphy page 202 CMOS President source of Président de la SCMO entrepreneurial The Canadian Societies for the Geophysical Sciences innovation and creativity” through our Science and (CSGS): Present and Potential Future Expansion Technology programs. As well as the substantial economic by David Fissel page 202 benefits realized from S&T, it was stated that “new Summer 2010: Wettest on the Canadian knowledge and technologies will help us meet many of the Prairies in 60 Years! challenges of the 21st century - from preserving the quality by Ray Garrett and Madhav Khandekar page 204 of the environment to enhancing our health, protecting our safety and security, and managing our energy and natural Census of Marine Life Report page 208 resources”. -
A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding
AUGUST 2020 Y A N G E T A L . 1663 A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding KUN YANG,VLADIMIR A. PARAMYGIN, AND Y. PETER SHENG Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida (Manuscript received 16 July 2019, in final form 2 March 2020) ABSTRACT A prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal inundation map on a high-resolution grid in 1 min (reference system Intel Core i7–3770K). The foundation of the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated by a robust storm surge modeling system, Curvilinear-Grid Hydrodynamics in 3D (CH3D-SSMS). The RFMS uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge database, which considers tens of thousands of combinations of five landfall parameters of storms: central pressure deficit, radius to maximum wind, forward speed, heading direction, and landfall location. The RFMS is applied to southwest Florida using data from Hurricane Charley in 2004 and Hurricane Irma in 2017, and to the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water mark data. The RFMS results agree well with observation and direct simulation of the high-resolution CH3D- SSMS. The RFMS can be used for real-time forecasting during a hurricane or ‘‘what-if’’ scenarios for miti- gation planning and preparedness training, or to produce a probabilistic flood map. -
Chapter 6: Everglades Research and Evaluation
2020 South Florida Environmental Report – Volume I Chapter 6 1 Chapter 6: 2 Everglades Research and Evaluation 3 Edited by Fred Sklar 4 SUMMARY 5 This chapter summarizes Water Year 2019 (WY2019; May 1, 2018–April 30, 2019) hydrology in the 6 Everglades Protection Area (EPA), followed by an overview of key Everglades studies on wildlife, plants, 7 the ecosystem, and landscapes (Table 6-1). Programs of study are based on the short-term operational needs 8 and long-term restoration goals of the South Florida Water Management District (SFWMD or District), 9 including large-scale and regional hydrologic needs in relation to regulation schedules, permitting, 10 Everglades Forever Act (Section 373.4592, Florida Statutes [F.S.]) mandates, and the Comprehensive 11 Everglades Restoration Plan (CERP). In addition, the Decomp Physical Model (DPM) research is discussed 12 in Appendix 6-1 of this volume. 13 Table 6-1. WY2019 Everglades research findings in relation to operational mandates. Hydrology Projects Findings Mandates a Across most of the Everglades, water depths began WY2019 just below average historic stages. Well above average late dry season rainfall raised stages quickly and depths peaked earlier than normal. Most areas within the Everglades Water Conservation Areas (WCAs) fell below average depths by the ROS Hydrologic Patterns for WY2019 end of the wet season. Dry season depths and recession rates MFL in the WCAs were largely not conducive for optimal wading bird foraging. The stage and recession rate in Everglades National Park (ENP) were closer to optimal, and higher numbers of nesting wading birds were noted there. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
KCEW Procedures
CRESTVIEW, FLORIDA AL-5261 (FAA) 20086 Rwy Idg LOC I-CEW APP CRS 8006 TDZE 213 ILS or LOC RWY 17 111.9 175° Apt Elev 214 BOB SIKES(CEW) ADF required. MISSED APPROACH: Climb T Circling NA for Cat D West of Rwy 17-35. Autopilot coupled approach NA. When local to 1000 then climbing right altimeter setting not received, use Eglin AFB altimeter setting and increase S-ILS 17 DA to turn to 2000 direct KOBRA A NA 1 472 and all MDA 60 feet, increase S-LOC 17 Cat C/D and Circling Cat D visibility 4 SM. LOM and hold. ASOS EGLIN APP CON UNICOM 119.275 124.05 284.65 122.95(CTAF)L ROMEK CE 25 N CEW 21.5 SA M M 355 2300 ° 1249 ° 220 ° 090° 270° 2000 040 165° (21.1) 1800 175 LOM / IAF ° KOBRA 201 CE SE-3, 07 OCT 2021 to 04 NOV C E 355 ° CRESTVIEW 2000 115.9 CEW C ° E 082 367 W 111.9 Chan 106 (7.5) I I-CEW C 395 WE 673 514 R-2914A SE-3, 07 OCT 2021 to 04 NOV R-2918 ELEV 214 TDZE 213 R-2915A 175° 3.8 NM 17 from FAF Duke Field 1 . 2 (Eglin AF Aux NR3) V % DO W CE 1000 2000 CE N Remain LOM within 10 NM 8006 ° 355 1498 X 2000 150 175° 0 . 3 1600 % GS 3.00° U TCH 50 P 3.8 NM V CATEGORY A B C D 3 3 35 S-ILS 17 413- 4 200 (200- 4 ) HIRL Rwy 17-35 L 1 1 S-LOC 17 407 (500-1) 620-1 407 (500-1 8 ) 620-1 8 FAF to MAP 3.8 NM 3 820-1 4 840-2 Knots 60 90 120 150 180 C CIRCLING 700-1 486 (500-1) 3 606 (700-1 4 ) 626 (700-2) Min:Sec 3:48 2:32 1:54 1:31 1:16 CRESTVIEW, FLORIDA 30°47'N-86°31'W BOB SIKES(CEW) Amdt 1 28FEB19 ILS or LOC RWY 17 CRESTVIEW, FLORIDA AL-5261 (FAA) 20086 WAAS Rwy Idg APP CRS 8006 CH 56206 TDZE 213 RNAV (GPS) RWY 17 175° W17A Apt Elev 214 BOB SIKES(CEW) RNP APCH. -
Intra‐Annual Variability in Responses of a Canopy Forming Kelp to Cumulative Low Tide Heat Stress
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336155330 Intra-Annual Variability in Responses of a Canopy Forming Kelp to Cumulative Low Tide Heat Stress: Implications for Populations at the Trailing Range Edge Article in Journal of Phycology · September 2019 DOI: 10.1111/jpy.12927 CITATIONS READS 5 210 3 authors: Hannah F. R. Hereward Nathan G King Cardiff University Bangor University 5 PUBLICATIONS 23 CITATIONS 15 PUBLICATIONS 179 CITATIONS SEE PROFILE SEE PROFILE Dan A Smale Marine Biological Association of the UK 123 PUBLICATIONS 7,729 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Examining the ecological consequences of climatedriven shifts in the structure of NE Atlantic kelp forests View project All content following this page was uploaded by Nathan G King on 06 January 2020. The user has requested enhancement of the downloaded file. J. Phycol. *, ***–*** (2019) © 2019 Phycological Society of America DOI: 10.1111/jpy.12927 INTRA-ANNUAL VARIABILITY IN RESPONSES OF A CANOPY FORMING KELP TO CUMULATIVE LOW TIDE HEAT STRESS: IMPLICATIONS FOR POPULATIONS AT THE TRAILING RANGE EDGE1 Hannah F. R. Hereward Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK Nathan G. King School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK and Dan A. Smale2 Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK Anthropogenic climate change is driving the Key index words: climate change; Kelp forests; Ocean redistribution of species at a global scale. -
Hurricane Michael's Wildfire Implications
HURRICANE MICHAEL’S WILDFIRE IMPLICATIONS Hurricane Michael made landfall at Mexico Beach, Florida as a Category 4 hurricane on October 10, 2018. After hitting Mexico Beach, Hurricane Michael continued into Georgia as a Category 3 hurricane. Winds of 155 miles per hour left a path of destruction across a landscape primarily known for endless tree farms. A ‘pickup stick’ disaster of trees were left in the wake of the storm resulting in a fuel loading exceeding 20 times the normal fuel loading for this region of Florida and Georgia. Seventy-two million tons of trees between Florida and the Georgia border alone were downed by the storm. The fuel loading created in Hurricane Michael’s wake has left Florida unsure of the next steps and well aware of the high potential for dangerous fires. Firefighters should be aware of the issues that they may face on assignment to Florida and Georgia as no options exist to remove the trees coupled with the inability to use heavy equipment for line construction and the extreme risk to the wildland-urban interface. “On April 4th a wildfire, caused by fire escaping from a burning debris pile, quickly grew and resulted in evacuations. Officials are worried that the fire could be the start to a particularly dangerous fire season for the state. "Even a normal fire season in the Panhandle could be catastrophic because of all the fuel," Florida Forest Service Director Jim Karels said Monday, according to the Tampa Bay Times.” For the full story on this wildfire click here: https://www.tampabay.com/breaking- news/hurricane-michael-debris-fuels-500-acre-wildfire-in-florida-panhandle-20190401/ The fuels on the ground currently mean that Florida will not face normal fire behavior or seasons, firefighters not familiar with these fuel types under normal conditions should use caution and obtain a full picture of fire potential and tactics before engaging. -
Hurricane Irma Storm Review
Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds. -
Background Hurricane Katrina
PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure. -
The Catskill Canister Volume 52 Number 2 April - June 2019
The Catskill Canister Volume 52 Number 2 April - June 2019 View from Twin. Photo by Jason Pelton, #3013 W1211 In this issue: President's Column Trail Mix: News and Notes from the Club Winter Weekend recap A Road Less Traveled... The Catskill 200 Camping with Children Did you know? The Catskill Adventure Patch Catskill Park Day 2019 A year spent climbing Remembering Father Ray Donahue Wildflowers - readers' favorite spots Fond memories of the Otis Elevator Race Nettles - A forager's delight Conservation Corner Annual Dinner announcement Hike Schedule Member lists Editor's Notes 1 Spathe and Spadix The President’s Column by Heather Rolland When the Catskill 3500 Club was created, our mission – to promote hiking the high peaks of the Catskills, to promote social interaction among Catskill high peak hikers, and to support conservation of these places – filled a void. In a world with no internet and thus no social media, helping hikers connect with each other was a valued and needed service. Because if there’s one thing I’ve learned in my decade or so of involvement with this club, it’s that the only thing hikers enjoy more than hiking is talking about hiking! Sharing war stories, trading bushwhack routes, and waxing euphoric about views… hikers, it would seem to me, love the replay with the like-minded as much as they love the adventure itself. But things have changed, and now that camaraderie is available in spades via social media. Leave No Trace is a national not-for-profit environmental organization on the frontlines of dealing with the good, the bad, and the ugly of managing the immense current upsurge in popularity of hiking and outdoor recreation.