Reflexes Evoked by Electrical Vestibular Stimulation and Their Clinical Application

Total Page:16

File Type:pdf, Size:1020Kb

Reflexes Evoked by Electrical Vestibular Stimulation and Their Clinical Application REFLEXES EVOKED BY ELECTRICAL VESTIBULAR STIMULATION AND THEIR CLINICAL APPLICATION by STUART WILLIAM MACKENZIE A Thesis submitted to the University of BirminghAm for the degree of DOCTOR OF PHILOSOPHY School of Sport, Exercise And RehAbilitAtion Sciences, College of Life And EnvironmentAl Sciences University of BirminghAm Date 15th June 2018 i University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The vestibulAr system provides vitAl informAtion About heAd position And heAd motion. This informAtion is used for the control of bAlAnce through vestibulospinAl reflexes. However, As the vestibulAr system is fixed within the skull, it must first be trAnsformed into body coordinAtes. ChApter 2 explores this trAnsformAtion process with And without vision. The results show thAt when vision is AvailAble, the evoked response is pArAdoxically less precise. ChApter 3 further explores the trAnsformAtion process before And After 60 dAys of bedrest. After this period of inActivity, pArticipAnts spontAneously swAyed more, and their EVS-evoked swAy response wAs less precise. This decrement in precision, however, appears to be showing signs of recovery, 6 dAys post bedrest. ChApter 4 switches focus from posturAl reflexes to vestibulo-oculAr reflexes. Here electrical vestibulAr stimulAtion is used to evoke meAsurAble torsionAl eye movements. The mAgnitude of the response is modulAted by stimulus frequency. Results Also suggest thAt the CNS interprets electrical vestibulAr stimulAtion As a velocity signAl rAther thAn A position or AccelerAtion signAl. As this technique is An ideAl meAsure of pure vestibulAr function, ChApter 5 utilised the technique in A clinical environment. VestibulAr schwAnnomA pAtients, who hAve A known unilAterAl vestibulAr deficit, were tested to identify if the proposed technique can in fAct detect this deficit. Results showed thAt Asymmetries could be detected, and, in fAct the test mAy be more sensitive thAn previously used meAsures of vestibulAr Asymmetries. ii ACKNOWLEDGMENTS Dr. Raymond Reynolds: ThAnk you for All of your help throughout my PhD. You were the one who initiAlly captured my interest in the vestibulAr system during my undergrAduAte studies And I Am glAd I hAve hAd the opportunity to further investigAte this fAscinAting field of reseArch. A pArticulAr highlight of my PhD was All those weeks we spent working together in Toulouse. I look forwArd to continuing working with you in the future. ENT Clinic at UHB: The prActical And clinical knowledge I leArned while Attending Mr. Irving’s And Mr. Monksfeild’s clinics wAs invaluAble to chApter 5. Mr. KumAr wAs vitAl in the meAsurements of tumor sizes for this chApter. I would Also like to thAnk All the pAtients who so enthusiAstically pArticipAted in my reseArch. MEDES: Bedrest studies can be notorious hArd to orgAnized but As A teAm you mAde the entire process seAmless And enjoyable. The pArticipAnts who, ultimAtely Are putting their lives on hold for 2 months, were A joy to work with And I thAnk them unreservedly. Motor Control Research group: ThAnks to All the members of the (now fAmously named) Wobblers. I hAve not only leArnt A lot from our critical discussion of work but Also enjoy mAny A pint in stAff house. iii Technical staff at the School of Sport, Exercise and Rehabilitation Sciences: You guys Are vitAl to the running of the school And I thAnk you for All your help. Postgraduate community: ThAnks to All those I hAve shAred An office with. We hAve been through highs And lows, and enjoyed countless unforgettAble moments together. ThAnks to the footbAll teAm, Anyone who Attended the legendAry ChristmAs pub crAwls, And All those I shAred A beer with in stAff house. Mum, Dad and Jess: You hAve helped me become the person I Am todAy. Your support through, whAt must seem like An eternity of student life, wAs invaluAble. ThAnk you for your unconditionAl support And love. Ashleigh: You were the one who pushed me to Apply for this PhD And set me off on this career trAjectory And for thAt I can never thAnk you enough. You hAve helped me with my studies where you cAn, especiAlly with proof reAding. Our holidAys throughout my studies were AmAzing And you AlwAys orgAnized them At time when I needed to relAx the most. You Are AlwAys there for me, And I will AlwAys be there for you. iv PUBLICATIONS AND PRESENTATIONS ChApters presented in this thesis have been published in the following journAls; Chapter 2 - MAckenzie, S. W., & Reynolds, R. F. (2018). DifferentiAl effects of vision upon the AccurAcy And precision of vestibulAr-evoked bAlAnce responses. Journal of Physiology. doi:10.1113/JP275645 Chapter 4 - MAckenzie, S. W., & Reynolds, R. F. (2018). OculAr torsion responses to sinusoidAl electrical vestibulAr stimulAtion. Journal of Neuroscience Methods, 294, 116-121. doi:10.1016/j.jneumeth.2017.11.012 Chapter 5 – Under review At JournAl of Clinical Neurophysiology. ReseArch within this thesis hAs been presented At the following conferences; • 7th InternAtionAl Posture Symposium 2015 (Smolenice, SlovakiA) • UK Sensory Motor Meeting 2016 (Newcastle, UK) • MRC-ARUK Student Meeting 2016 (NottinghAm, UK) • Society for the NeurAl Control of Movement AnnuAl Meeting 2016 (Montego BAy, JamAica) • Society for the NeurAl Control of Movement AnnuAl Meeting 2017 (Dublin, IrelAnd) • UK Sensory Motor Meeting 2017 (Bristol, UK) • InternAtionAl Society of Posture & GAit ReseArch World Congress 2017 (Fort LAuderdAle, USA) • The 30th Bárány Society meeting 2018 (UppsAlA, Sweden) v .)4/#4/'! ! !"#$%!&$''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''())! !&*+,-./012/+$#(''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''()))! 34".5&!$5,+#(!+0(3%/#/+$!$5,+#('''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(6! .5#$(,7(7514%/#('''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''8))! .5#$(,7($!"./#(''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(8)6! .5#$(,7(!""%595!$5,+#('''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(86! ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(:! 1/+/%!.(5+$%,04&$5,+('''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(:! "#$#%&'!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)! *'%+,-.!/%012+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3! 45+5,%!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3! 6'&7#%,-'&'02,-+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!8! 9-,0-5,&'025,%!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!:! ;'#-5%<!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!=! *'%+,-.!/%2'<-#25,%((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!=! >7'!4'+25?1$#-!*.+2'@!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!A! 4'+25?1$#-!BCC'-'%2+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)D! E2,$527!E-<#%+!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)3! *'@5FG5-&1$#-!G#%#$+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)H! 4'+25?1$#-!G,%%'&25,%+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)8! 4'+25?1$#-!I'C$'J'+!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)=! 4'+25?1$,FE&1$#-!I'C$'J!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!)=! 4'+25?1$,+05%#$!I'C$'J!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3D! <" 9'-21-?5%<!4'+25?1$#-!I'C$'J'+!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3D! >5$2!>#?$'!>'+2!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3D! G#$,-5&!I'C$'J!>'+2!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!33! K#$L#%5&!4'+25?1$#-!*25@1$#25,%!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!3H!
Recommended publications
  • The Treatment of Peripheral Vestibular Dysfunction Using Caloric Vestibular Stimulation in Patients with Cerebral Hypertensive Crisis
    International Journal of Otolaryngology and Head & Neck Surgery, 2015, 4, 229-235 Published Online May 2015 in SciRes. http://www.scirp.org/journal/ijohns http://dx.doi.org/10.4236/ijohns.2015.43039 The Treatment of Peripheral Vestibular Dysfunction Using Caloric Vestibular Stimulation in Patients with Cerebral Hypertensive Crisis Yana Yuriyvna Gomza1, Ralph Mösges2* 1Otorhinolaryngology Department, National O.O. Bogomolets Medical University, Kiev, Ukraine 2Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Cologne, Germany Email: *[email protected] Received 20 April 2015; accepted 10 May 2015; published 18 May 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Background: To verify the efficacy of caloric vestibular stimulation in patients with peripheral vestibular dysfunction after cerebral hypertensive crisis. Methods: Enrolled in the study were 60 patients with peripheral vestibular dysfunction caused by a cerebral hypertensive crisis, docu- mented by vestibulometry. Thirty patients underwent standard treatment plus caloric vestibular stimulation, and 30 control group patients received standard treatment alone. Results: After the two-week treatment course, the sensation of vertigo was observed in 40.0% ± 8.9% of treatment group patients compared with 80.0% ± 7.3% of control group patients (t = 3.46; p < 0.001). Spon- taneous vestibular somatic reactions were found in 46.7% ± 9.1% of the study treatment group in contrast to 86.7% ± 6.2% of the control group (t = 3.63; p < 0.001). Spontaneous nystagmus was seen in 40.0% ± 8.9% of treatment group patients compared with 93.3% ± 4.6% of control sub- jects (t = 5.31; p < 0.001).
    [Show full text]
  • Impact of Extremely Low-Frequency Magnetic Fields on Human Postural Control
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 11-14-2016 12:00 AM Impact of Extremely Low-Frequency Magnetic Fields on Human Postural Control Alicia N. Allen The University of Western Ontario Supervisor Dr. Alexandre Legros The University of Western Ontario Graduate Program in Kinesiology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Alicia N. Allen 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Kinesiology Commons Recommended Citation Allen, Alicia N., "Impact of Extremely Low-Frequency Magnetic Fields on Human Postural Control" (2016). Electronic Thesis and Dissertation Repository. 4341. https://ir.lib.uwo.ca/etd/4341 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The general public and workers can be exposed to high-levels of power-line frequency magnetic fields (MFs - up to 10 mT). Although such time-varying MFs have the potential to modulate human postural control, no existing studies have explored MF exposure levels that possibly trigger acute sway responses. This work evaluates time-varying MF exposure (up to 100 mT) in the extremely low frequency range (ELF – up to 300 Hz) and its effects on human postural control. Twenty-two healthy participants were each exposed to randomized, 5-second MF and electric stimulations (0, 50 and 100 mT and 1.5 mA respectively) given at different frequencies (20, 60, 90, 120, and 160 Hz).
    [Show full text]
  • The Effects of Caffeine on Video Head Impulse Test Results
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Capstones & Scholarly Projects Student Research 5-3-2020 The effects of caffeine on video head impulse test results Elizabeth Zakrzewski [email protected] Follow this and additional works at: https://digscholarship.unco.edu/capstones Recommended Citation Zakrzewski, Elizabeth, "The effects of caffeine on video head impulse test results" (2020). Capstones & Scholarly Projects. 71. https://digscholarship.unco.edu/capstones/71 This Dissertation/Thesis is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Capstones & Scholarly Projects by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. © 2020 ELIZABETH ANNE ZAKRZEWSKI ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School THE EFFECTS OF CAFFEINE ON VIDEO HEAD IMPULSE TEST RESULTS A Capstone Research Project Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Audiology Elizabeth Anne Zakrzewski College of Natural and Health Sciences School of Human Sciences Audiology and Speech-Language Sciences Program May, 2020 This Capstone Research Project by: Elizabeth Anne Zakrzewski Entitled: The Effects of Caffeine on Video Head Impulse Test Results has been approved as meeting the requirement for the Degree of Doctor of Audiology in the College of Natural and Health Sciences, School of Human Sciences, Audiology and Speech-Language Sciences Program Accepted by the Capstone Research Project Committee ______________________________________________________ Tina M. Stoody, Ph.D., Co-Research Advisor ______________________________________________________ Kathryn Bright, Ph.D., Co-Research Advisor ______________________________________________________ Gary Heise, Ph.D., Faculty Representative Accepted by the Graduate School ________________________________________________________________ Cindy Wesley, Ph.D.
    [Show full text]
  • Evaluation of Chronic Autonomic Symptoms in Gulf War Veterans with Unexplained Fatigue
    Evaluation of Chronic Autonomic Symptoms in Gulf War Veterans with Unexplained Fatigue • Principal Investigator: Dr. Mian Li, WRIISC-DC and Neurology Service at VAMC-DC; Associate Clinical Professor of Neurology • Co-Investigators: Drs Han Kang, Pamela Karasik, Clara Mahan, Friedhelm Sandbrink, Ping Zhai • Post-doctoral fellow: Changqing Xu • Study Coordinator (Volunteer Status): Wenguo Yao • Funded by VA Merit Review Clinical Science R & D • Research approved by local IRB/R & D and conducted in VAMC- DC with compliance of stipulated human research regulations and VA policies regarding report or dissemination of research and non- research information. 1 Rationale • GW veterans (7.7%) reported dizziness/imbalance. blurred vision, excessive fatigue, or tremor (Kang HK, et al. Illnesses among United States veterans of the Gulf War: a population- based survey of 30,000 veterans. J Occup Environ Med 2000; 42(5): 491-501 • Reported neurological symptoms are similar or identical to those from patients with diseases of autonomic nervous system • Ill group (deployed) with post-exertion fatigue • Control (deployed) without fatigue • Objective of this study • Autonomic parameters useful in treatment 2 Peripheral Autonomic Nervous System • Afferent Pathways • Efferent Components parasympathetic and sympathetic • Neurotoxin may preferentially affect small nerve fiber • Small fiber neuropathy vs Autonomic neuropathy • Long delay in diagnosing autonomic system disorder: a) unclear nature course of acquired autonomic disorders b) lack of appropriate
    [Show full text]
  • A Compendium of Research
    NASA TECHNICAL NASA TM X-3308 MEMORANDUM CO CO I X c PHYSIOLOGIC RESPONSES TO WATER IMMERSION IN MAN: A COMPENDIUM OF RESEARCH James Kollias, Dena Van Derveer, Karen J. Dorchak, and John E. Greenleaf Ames Research Center Moffett Field, Calif. 94035 ^ *" /V NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1976 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-3308 4. Title and Subtitle 5. Report Date February 1976 PHYSIOLOGIC RESPONSES TO WATER IMMERSION IN MAN: 6. Performing Organization Code A COMPENDIUM OF RESEARCH 7. Author(s) 8. Performing Organization Report No. A-6038 James Kollias, Dena Van Derveer, Karen J. Dorchak, and John E. Greenleaf 10. Work Unit No. 9. Performing Organization Name and Address 970-21-14-05 NASA Ames Research Center 11. Contract or Grant No. Moffett Field, Calif. 94035 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Since the advent of space flight programs, scientists have been searching for ways to reproduce the zero-gravity effects of weightlessness. Brief periods of weightlessness up to 1 minute were feasible using Keplerian trajectory, but comprehen- sive study of the prolonged effects of the weightless state necessitated the development of other methods. Thus far the two approaches most widely used have been complete bedrest and fluid immersion. Surprisingly, these simulated environments have produced essentially all of the symptoms found in astronauts. This compendium contains reports appearing in the literature through December 1973.
    [Show full text]
  • Neurophysiology (Revised 2012)
    The American Physiological Society Medical Curriculum Objectives Project Complete curriculum objectives available at: http://www.the-aps.org/medphysobj Neurophysiology (revised 2012) Cellular Neurophysiology, Blood Brain Barrier, Cerebrovascular Physiology A. Physiology of the Neuron NEU 1. Define, and identify on a diagram of a motor neuron, the following regions: dendrites, axon, axon hillock, soma, and an axodendritic synapse. NEU 2. Define, and identify on a diagram of a primary sensory neuron, the following regions: receptor membrane, peripheral axon process, central axon process, soma, sensory ganglia. NEU 3. Write the Nernst equation, and explain the effects of altering the intracellular or extracellular Na+, K+, Cl-, or Ca2+ concentration on the equilibrium potential for that ion. NEU 4. Describe the normal distribution of Na+, K+, and Cl- across the cell membrane, and using the chord conductance (Goldman) equation, explain how the relative permeabilities of these ions create a resting membrane potential. NEU 5. Describe ionic basis of an action potential. NEU 6. Distinguish the effects of hyperkalemia, hypercalcemia, and hypoxia on the resting membrane and action potential. NEU 7. Explain how the abnormal function of ion channels (channelopathies) can alter the resting membrane and action potential and cause paralysis, ataxia, or night blindness. NEU 8. Describe the ionic basis of each of the following local graded potentials: excitatory post synaptic potential (EPSP), inhibitory post synaptic potential (IPSP), end plate potential (EPP) and a receptor (generator) potential. NEU 9. Contrast the generation and conduction of graded potentials (EPSP and IPSP) with those of action potentials. NEU 10. On a diagram of a motor neuron, indicate where you would most likely find IPSP, EPSP, action potential trigger point, and release of neurotransmitter.
    [Show full text]
  • Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
    Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Aging of the Autonomic Nervous System
    Autonomic Nervous System in Old Age Interdisciplinary Topics in Gerontology Vol. 33 Series Editors Patrick R. Hof, New York, N.Y. Charles V. Mobbs, New York, N.Y. Editorial Board Constantin Bouras, Geneva Christine K. Cassel, New York, N.Y. Anthony Cerami, Manhasset, N.Y. H. Walter Ettinger, Winston-Salem, N.C. Caleb E. Finch, Los Angeles, Calif. Kevin Flurkey, Bar Harbor, Me. Laura Fratiglioni, Stockholm Terry Fulmer, New York, N.Y. Jack Guralnik, Bethesda, Md. Jeffrey H. Kordower, Chicago, Ill. Bruce S. McEwen, New York, N.Y. Diane Meier, New York, N.Y. Jean-Pierre Michel, Geneva John H. Morrison, New York, N.Y. Mark Moss, Boston, Mass. Nancy Nichols, Melbourne S. Jay Olshansky, Chicago, Ill. James L. Roberts, San Antonio, Tex. Jesse Roth, Baltimore, Md. Albert Siu, New York, N.Y. John Q. Trojanowski, Philadelphia, Pa. Bengt Winblad, Huddinge Autonomic Nervous System in Old Age Volume Editors George A. Kuchel, Farmington, Conn. Patrick R. Hof, New York, N.Y. 11 figures and 9 tables, 2004 Basel · Freiburg · Paris · London · New York · Bangalore · Bangkok · Singapore · Tokyo · Sydney George A. Kuchel, MD FRCP UConn Center on Aging University of Connecticut Health Center Farmington, Conn., USA Patrick R. Hof, MD Associate Professor, Kastor Neurobiology of Aging Laboratories Dr. Arthur Fishberg Research Centre for Neurobiology Mount Sinai School of Medicine New York, N.Y., USA Library of Congress Cataloging-in-Publication Data Autonomic nervous system in old age / volume editors, George A. Kuchel, Patrick R. Hof. p. ; cm. – (Interdisciplinary topics in gerontology, ISSN 0074–1132 ; v. 33) Includes bibliographical references and index.
    [Show full text]
  • Metabolic and Other Causes of Dysautonomia, Orthostatic
    AUTONOMIC DISORDERS AND AUTONOMIC TESTING Kamal R. Chémali, MD Associate Professor of Clinical Neurology Eastern Virginia Medical School Director, Sentara Neuromuscular and Autonomic Center Director, Sentara Music and Medicine Center Kevin McNeeley Sentara Autonomic Laboratory Coordinator The Upright Posture • Significant stress on the body to maintain adequate cerebral flow • Pooling of 500ml to 1000ml of blood • Decreased venous return to the heart • Reduced cardiac output and blood pressure • Compensatory baroreflex activation (CNS, afferent and efferent PNS pathways) • When this system fails, OH, cerebral hypoperfusion, syncope occur The 3 Orthostatic Syndromes Orthostatic Postural Reflex Hypotension Tachycardia Syncope Definition Gradual, Sustained ↑HR>30 1st 10’ Sudden ↓sBP>20 or ↓dBP>10 up; no ↓ BP ↓BP & HR BP Pattern Physiology Arterial denervation – Venous return Brainstem main impact diastole impact systole threshold CV reflexes Usually abnormal Usually normal Usually nl Associated Disease-based Syndromic Syndromic Dysauton. Poor prognosis Good Prognosis SFN Type Severe, Diffuse Mild, Focal None Somatic Small Fiber System Small fiber anterolateral system Large fiber dorsal column – medial lemniscal system CCF 2001 Purves: Neuroscience. 2004 Case 1 (Somatic Small Fiber Neuropathy) • A 48 year-old man presents to your clinic because of a burning sensation in his toes that started 3 months ago and has progressed to involve the entire foot up to the ankle bilaterally. He denies any past medical history but has gained 25 lbs in the past year, due to overeating and inactivity. • On examination, he has a mild sensory gradient to pinprick and temperature in stockings distribution up to the ankles. Vibration is mildly reduced at the toes and joint position sense is intact.
    [Show full text]
  • Autonomic Symptom Burden Is an Independent Contributor to Multiple Sclerosis Related Fatigue
    Clinical Autonomic Research (2019) 29:321–328 https://doi.org/10.1007/s10286-018-0563-6 RESEARCH ARTICLE Autonomic symptom burden is an independent contributor to multiple sclerosis related fatigue Magdalena Krbot Skorić1,2 · Luka Crnošija1 · Ivan Adamec1 · Barbara Barun1,3 · Tereza Gabelić1,3 · Tomislav Smoljo3 · Ivan Stanić3 · Tin Pavičić3 · Ivan Pavlović3 · Jelena Drulović4 · Tatjana Pekmezović5 · Mario Habek1,3 Received: 13 June 2018 / Accepted: 30 August 2018 / Published online: 12 September 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Objectives To investigate a possible association between autonomic dysfunction and fatigue in people with multiple sclerosis. Methods In 70 people with multiple sclerosis early in the disease course (51 females, mean age 33.8 ± 9.1), quantitative sudomotor axon refex tests, cardiovascular refex tests (heart rate and blood pressure responses to the Valsalva maneuver and heart rate response to deep breathing), and the tilt table test were performed. Participants completed the Composite Autonomic Symptom Score 31, the Modifed Fatigue Impact Scale, and the Epworth Sleepiness Scale, as well as the Beck Depression Inventory. Cutof scores of ≥ 38 or ≥ 45 on the Modifed Fatigue Impact Scale were used to stratify patients into a fatigued subgroup (N = 17 or N = 9, respectively). Results We found clear associations between fatigue and scores in subjective tests of the autonomic nervous system: fatigued patients scored signifcantly worse on Composite Autonomic Symptom Score 31, and there was a strong correlation between the Modifed Fatigue Impact Scale and the Composite Autonomic Symptom Score 31 (rs = 0.607, p < 0.001). On the other hand, we found only modest associations between fatigue and scores in objective tests of the autonomic nervous system: there was a clear trend for lower sweating outputs at all measured sites, which reached statistical signifcance for the distal leg and foot.
    [Show full text]
  • The Tilt Table Test in Autonomic Medicine
    Clinical Autonomic Research (2019) 29:215–230 https://doi.org/10.1007/s10286-019-00598-9 REVIEW ARTICLE Autonomic uprising: the tilt table test in autonomic medicine William P. Cheshire Jr.1 · David S. Goldstein2 Received: 25 January 2019 / Accepted: 21 February 2019 / Published online: 5 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract This perspective piece on head-up tilt table testing is part of a series on autonomic function testing. The tilt table can be a useful diagnostic test, but methodologies vary, and the results are sometimes misinterpreted. The intent here is not to review comprehensively the utility of various tilt table testing protocols but to convey a number of general points that may give perspective and have practical clinical value, based on an understanding of autonomic physiology and our long clini- cal and research experience in the evaluation of autonomic disorders. The goals of tilt table testing are to assess orthostatic hypotension (OH), chronic orthostatic intolerance (COI), and unexplained syncope. The testing is useful for distinguishing neurogenic from non-neurogenic OH, identifying failure of the sympathetic noradrenergic system in autonomic neuropathies and ganglionopathies, and assessing barorefex-sympathoneural function in α-synucleinopathies. For COI, the testing can provide objective data related to the patient’s symptoms, diagnose postural tachycardia syndrome (POTS), and distinguish POTS from other causes of tachycardia. Provocative tilt table testing can help understand bases for recurrent transient loss of consciousness in patients with syncope, distinguish neurally mediated syncope from psychogenic pseudosyncope, and separate syncope-related convulsion from epileptic seizures. For each of these purposes, the goals, formats, endpoints, and clinical utility are diferent.
    [Show full text]
  • Syncope and Atypical Seizures
    Syncope and Atypical Seizures Ravi Mandapati, M.D., FACC.; FHRS Director, Specialized Program for Arrhythmias in Congenital Heart Disease UCLA Cardiac Arrhythmia Center David Geffen School of Medicine at UCLA Director, Pediatric Cardiac Electrophysiology Loma Linda University Medical Center Syncope • Sy ncope is a transient loss of consciousness d ue to transient global cerebral hypo perfusion characterized by rapid onset, short duration, and spontaneous complete recovery. • Without qualifying transient global hypo perfusion, the definition of syncope becomes wide enough to include disorders such as epileptic seizures and concussion. •January 14-15, 2011 SCA Conference •1 Seizures are frequently and inappropriately classified as syncope Seizures •Sheldon et al. Diagnosis of Syncope and Seizures, JACC 2002 •January 14-15, 2011 SCA Conference •2 Seizures •Sheldon et al. Diagnosis of Syncope and Seizures, JACC 2002 Breath holding spells • Infantile reflex syncopal attacks or pallid breath holding spells elicited by noxious stimuli are caused by vagally mediated cardiac inhibition. • Cyanotic breath holding spells that occur with expiratory cessation of respiration during crying •January 14-15, 2011 SCA Conference •3 Neurally Mediated Reflex Syncope/Triggers • Emotion/pain • Prolonged standing • Micturition • Post exercise • Hyperventilation and straining • Stretching • Coughing • Standing up suddenly • Deglution Syncope : Mechanical /Structural • Aortic Stenosis • Hypertrophic cardiomyopathy • Anomalous coronary artery • Severe pulmonary
    [Show full text]