Information Security Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Theory on Information Security
Australasian Conference on Information Systems Horne et al. 2016, Wollongong, Australia A Theory on Information Security A Theory on Information Security Craig A. Horne Department of Computing and Information Systems The University of Melbourne Victoria, Australia Email: [email protected] Atif Ahmad Department of Computing and Information Systems The University of Melbourne Victoria, Australia Email: [email protected] Sean B. Maynard Department of Computing and Information Systems The University of Melbourne Victoria, Australia Email: [email protected] Abstract This paper proposes a theory on information security. We argue that information security is imperfectly understood and aim to bring about an altered understanding of why efforts are made to engage in information security. The goal of information security is widely recognised as the confidentiality, integrity and availability of information however we argue that the goal is actually to simply create resources. This paper responds to calls for more theory in information systems, places the discussion in philosophical context and compares various definitions. It then identifies the key concepts of information security, describes the relationships between these concepts, as well as scope and causal explanations. The paper provides the theoretical base for understanding why information is protected, in addition to theoretical and practical implications and suggestions for future research. Keywords Information security, resources, controls, threats, theory development. 1 Australasian Conference on Information Systems Horne et al. 2016, Wollongong, Australia A Theory on Information Security 1 INTRODUCTION Despite the concept of information security being very well established, the reasons and motivations behind it are imperfectly understood. This paper seeks to explain how and why the phenomena that comprise the concepts of information security occur. -
Operating Systems and Virtualisation Security Knowledge Area (Draft for Comment)
OPERATING SYSTEMS AND VIRTUALISATION SECURITY KNOWLEDGE AREA (DRAFT FOR COMMENT) AUTHOR: Herbert Bos – Vrije Universiteit Amsterdam EDITOR: Andrew Martin – Oxford University REVIEWERS: Chris Dalton – Hewlett Packard David Lie – University of Toronto Gernot Heiser – University of New South Wales Mathias Payer – École Polytechnique Fédérale de Lausanne © Crown Copyright, The National Cyber Security Centre 2019. Following wide community consultation with both academia and industry, 19 Knowledge Areas (KAs) have been identified to form the scope of the CyBOK (see diagram below). The Scope document provides an overview of these top-level KAs and the sub-topics that should be covered under each and can be found on the project website: https://www.cybok.org/. We are seeking comments within the scope of the individual KA; readers should note that important related subjects such as risk or human factors have their own knowledge areas. It should be noted that a fully-collated CyBOK document which includes issue 1.0 of all 19 Knowledge Areas is anticipated to be released by the end of July 2019. This will likely include updated page layout and formatting of the individual Knowledge Areas. Operating Systems and Virtualisation Security Herbert Bos Vrije Universiteit Amsterdam April 2019 INTRODUCTION In this knowledge area, we introduce the principles, primitives and practices for ensuring security at the operating system and hypervisor levels. We shall see that the challenges related to operating system security have evolved over the past few decades, even if the principles have stayed mostly the same. For instance, when few people had their own computers and most computing was done on multiuser (often mainframe-based) computer systems with limited connectivity, security was mostly focused on isolating users or classes of users from each other1. -
Data and Database Security and Controls
1 Handbook of Information Security Management, Auerbach Publishers, 1993, pages 481-499. DATA AND DATABASE SECURITY AND CONTROLS Ravi S. Sandhu and Sushil Jajodia Center for Secure Information Systems & Department of Information and Software Systems Engineering George Mason University, Fairfax, VA 22030-4444 Telephone: 703-993-1659 1 Intro duction This chapter discusses the topic of data security and controls, primarily in the context of Database Management Systems DBMSs. The emphasis is on basic principles and mechanisms, which have b een successfully used by practitioners in actual pro ducts and systems. Where appropriate, the limitations of these techniques are also noted. Our discussion fo cuses on principles and general concepts. It is therefore indep endent of any particular pro duct except for section 7 which discusses some pro ducts. In the more detailed considerations we limit ourselves sp eci cally to relational DBMSs. The reader is assumed to be familiar with rudimentary concepts of relational databases and SQL. A brief review of essential concepts is given in the app endix. The chapter b egins with a review of basic security concepts in section 2. This is followed, in section 3, by a discussion of access controls in the current generation of commercially available DBMSs. Section 4 intro duces the problem of multilevel security. It is shown that the techniques of section 3 are inadequate to solve this problem. Additional techniques develop ed for multilevel security are reviewed. Sec- tion 5, discusses the various kinds of inference threats that arise in a database system, and discusses metho ds that have b een develop ed for dealing with them. -
Malware Information
Malware Information Source: www.onguardonline.gov Malware Quick Facts Malware, short for "malicious software," includes viruses and spyware to steal personal information, send spam, and commit fraud. Criminals create appealing websites, desirable downloads, and compelling stories to lure you to links that will download malware – especially on computers that don't use adequate security software. But you can minimize the havoc that malware can wreak and reclaim your computer and electronic information. If you suspect malware is on your computer: • Stop shopping, banking, and other online activities that involve user names, passwords, or other sensitive information. • Confirm that your security software is active and current. At a minimum, your computer should have anti-virus and anti-spyware software, and a firewall. • Once your security software is up-to-date, run it to scan your computer for viruses and spyware, deleting anything the program identifies as a problem. • If you suspect your computer is still infected, you may want to run a second anti-virus or anti-spyware program – or call in professional help. • Once your computer is back up and running, think about how malware could have been downloaded to your machine, and what you could do to avoid it in the future. Malware is short for "malicious software;" it includes viruses – programs that copy themselves without your permission – and spyware, programs installed without your consent to monitor or control your computer activity. Criminals are hard at work thinking up creative ways to get malware on your computer. They create appealing web sites, desirable downloads, and compelling stories to lure you to links that will download malware, especially on computers that don't use adequate security software. -
Hacking & Social Engineering
Hacking & Social Engineering Steve Smith, President Innovative Network Solutions, Inc. Presentation Contents Hacking Crisis What is Hacking/Who is a Hacker History of Hacking Why do Hackers hack? Types of Hacking Statistics Infrastructure Trends What should you do after being hacked Proactive Steps Social Engineering Objective What is Social Engineering What are they looking for? Tactics Protecting yourself INS Approach Infrastructure Assessment Network Traffic Assessment Social Engineering Assessment Conclusion Security is Everyone’s Responsibility – See Something, Say Something! Hacking Crisis Internet has grown very fast and security has lagged behind It can be hard to trace a perpetrator of cyber attacks because most are able to camouflage their identities Large scale failures on the internet can have a catastrophic impact on: the economy which relies heavily on electronic transactions human life, when hospitals or government agencies, such as first responders are targeted What is Hacking? The Process of attempting to gain or successfully gaining, unauthorized access to computer resources Who is a Hacker? In the computer security context, a hacker is someone who seeks and exploits weaknesses in a computer system or computer network. History of Hacking Began as early as 1903: Magician and inventor Nevil Maskelyne disrupts John Ambrose Fleming's public demonstration of Guglielmo Marconi's purportedly secure wireless telegraphy technology, sending insulting Morse code messages through the auditorium's projector The term “Hacker” originated in the 1960’s at MIT A network known as ARPANET was founded by the Department of Defense as a means to link government offices. In time, ARPANET evolved into what is today known as the Internet. -
Cyber Threats to Mobile Phones Paul Ruggiero and Jon Foote
Cyber Threats to Mobile Phones Paul Ruggiero and Jon Foote Mobile Threats Are Increasing Smartphones, or mobile phones with advanced capabilities like those of personal computers (PCs), are appearing in more people’s pockets, purses, and briefcases. Smartphones’ popularity and relatively lax security have made them attractive targets for attackers. According to a report published earlier this year, smartphones recently outsold PCs for the first time, and attackers have been exploiting this expanding market by using old techniques along with new ones.1 One example is this year’s Valentine’s Day attack, in which attackers distributed a mobile picture- sharing application that secretly sent premium-rate text messages from the user’s mobile phone. One study found that, from 2009 to 2010, the number of new vulnerabilities in mobile operating systems jumped 42 percent.2 The number and sophistication of attacks on mobile phones is increasing, and countermeasures are slow to catch up. Smartphones and personal digital assistants (PDAs) give users mobile access to email, the internet, GPS navigation, and many other applications. However, smartphone security has not kept pace with traditional computer security. Technical security measures, such as firewalls, antivirus, and encryption, are uncommon on mobile phones, and mobile phone operating systems are not updated as frequently as those on personal computers.3 Mobile social networking applications sometimes lack the detailed privacy controls of their PC counterparts. Unfortunately, many smartphone users do not recognize these security shortcomings. Many users fail to enable the security software that comes with their phones, and they believe that surfing the internet on their phones is as safe as or safer than surfing on their computers.4 Meanwhile, mobile phones are becoming more and more valuable as targets for attack. -
Information Security Essentials Definition of Information Security
Computing Services Information Security Office Information Security Essentials Definition of Information Security Information security is the protection of information and systems from unauthorized access, disclosure, modification, destruction or disruption. The three objectives of information security are: • Confidentiality • Integrity • Availability Confidentiality Confidentiality refers to the protection of information from unauthorized access or disclosure. Ensuring confidentiality is ensuring that those who are authorized to access information are able to do so and those who are not authorized are prevented from doing so. Integrity Integrity refers to the protection of information from unauthorized modification or destruction. Ensuring integrity is ensuring that information and information systems are accurate, complete and uncorrupted. Availability Availability refers to the protection of information and information systems from unauthorized disruption. Ensuring availability is ensuring timely and reliable access to and use of information and information systems. Information Security Policy Carnegie Mellon has adopted an Information Security Policy as a measure to protect the confidentiality, integrity and availability of institutional data as well as any information systems that store, process or transmit institutional data. Institutional data is defined as any data that is owned or licensed by the university. Information system is defined as any electronic system that stores, processes or transmits information. Policies • Throughout its lifecycle, all Institutional Data shall be protected in a manner that is considered reasonable and appropriate given the level of sensitivity, value and criticality that the Institutional Data has to the University. • Any Information System that stores, processes or transmits Institutional Data shall be secured in a manner that is considered reasonable and appropriate given the level of sensitivity, value and criticality that the Institutional Data has to the University. -
Image Steganography Applications for Secure Communication
IMAGE STEGANOGRAPHY APPLICATIONS FOR SECURE COMMUNICATION by Tayana Morkel Submitted in partial fulfillment of the requirements for the degree Master of Science (Computer Science) in the Faculty of Engineering, Built Environment and Information Technology University of Pretoria, Pretoria May 2012 © University of Pretoria Image Steganography Applications for Secure Communication by Tayana Morkel E-mail: [email protected] Abstract To securely communicate information between parties or locations is not an easy task considering the possible attacks or unintentional changes that can occur during communication. Encryption is often used to protect secret information from unauthorised access. Encryption, however, is not inconspicuous and the observable exchange of encrypted information between two parties can provide a potential attacker with information on the sender and receiver(s). The presence of encrypted information can also entice a potential attacker to launch an attack on the secure communication. This dissertation investigates and discusses the use of image steganography, a technology for hiding information in other information, to facilitate secure communication. Secure communication is divided into three categories: self-communication, one-to-one communication and one-to-many communication, depending on the number of receivers. In this dissertation, applications that make use of image steganography are implemented for each of the secure communication categories. For self-communication, image steganography is used to hide one-time passwords (OTPs) in images that are stored on a mobile device. For one-to-one communication, a decryptor program that forms part of an encryption protocol is embedded in an image using image steganography and for one-to-many communication, a secret message is divided into pieces and different pieces are embedded in different images. -
E-Commerce (Unit - III) 3.1 Need for Computer Security Computer Security: It Is a Process of Presenting and Detecting Unauthorized Use of Your Computer
36 E-Commerce (Unit - III) 3.1 Need for Computer Security Computer Security: It is a process of presenting and detecting unauthorized use of your computer. Prevention is measures help you stop unauthorized users (hackers) System often they want to gain control of your computer so they can use it to launch attack on other computer systems. Need for computer security Threats & Count measures Introduction to Cryptography Authentication and integrity Key Management Security in Practice – secure email & SMTP User Identification Trusted Computer System CMW SECMAN standards. The Importance of computer security: A computer security its very important, primarily to keep your information protected. Its also important for your computer overall health, helping to prevent various and malware and allowing program to run more smoothly. Computer Security – Why? Information is a strategic resource. A Significant portion of organizational budget is spent on managing information. Have several security related objectives. Threats to information security. The Security addressed here to general areas: Secure file / information transfers, including secure transactions. Security of information’s as stored on Internet – connected hosts. Secure enterprise networks, when used to support web commerce. Protecting Resources: The term computer and network security refers in a board sense to confidence that information and services available on a network cannot be accessed by unauthorized users. Security implies safety, including assurance to data integrity, freedom from unauthorized access, freedom snooping or wiretapping and freedom from distribution of service. Reasons for information security The requirements of information’s security in an organization have undergone two major changes in the last several decades. Types of Risks As the number of peoples utilizing the internet increases, the risks of security violations increases, with it. -
Secure Network Design
NUREG/CR-7117 SAND2010-8222P Secure Network Design Office of Nuclear Regulatory Research AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC’s Public Electronic Reading Room at books, journal articles, and transactions, Federal http://www.nrc.gov/reading-rm.html. Publicly released Register notices, Federal and State legislation, and records include, to name a few, NUREG-series congressional reports. Such documents as theses, publications; Federal Register notices; applicant, dissertations, foreign reports and translations, and licensee, and vendor documents and correspondence; non-NRC conference proceedings may be purchased NRC correspondence and internal memoranda; from their sponsoring organization. bulletins and information notices; inspection and investigative reports; licensee event reports; and Copies of industry codes and standards used in a Commission papers and their attachments. substantive manner in the NRC regulatory process are maintained at— NRC publications in the NUREG series, NRC The NRC Technical Library regulations, and Title 10, Energy, in the Code of Two White Flint North Federal Regulations may also be purchased from one 11545 Rockville Pike of these two sources. Rockville, MD 20852–2738 1. The Superintendent of Documents U.S. Government Printing Office These standards are available in the library for Mail Stop SSOP reference use by the public. Codes and standards are Washington, DC 20402–0001 usually copyrighted and may be purchased from the Internet: bookstore.gpo.gov originating organization or, if they are American Telephone: 202-512-1800 National Standards, from— Fax: 202-512-2250 American National Standards Institute 2. -
Secure by Design, Secure by Default: Requirements and Guidance
Biometrics and Surveillance Camera Commissioner Secure by Design, Secure by Default Video Surveillance Products Introduction This guidance is for any organisation manufacturing Video Surveillance Systems (VSS), or manufacturing or assembling components intended to be utilised as part of a VSS. It is intended to layout the Biometrics and Surveillance Camera Commissioners (BSCC) minimum requirements to ensure such systems are designed and manufactured in a manner that assures they are Secure by Design. It also contains certain component requirements that will ensure a configuration that is Secure by Default when the component is shipped, thereby making it more likely that the system will be installed and left in a secure state. This guidance forms part of a wider suite of documentation being developed as part of the SCC Strategy, in support of the SCC Code of Practice. Background and Context The nature of the Internet means that connected devices can be subjected to a cyber attack from anywhere in the world. Widespread attacks on connected products is a current and real threat, and a number of highly publicised attacks have already occurred. The Mirai malware targeted devices such as internet-enabled cameras (IP cameras). Mirai was successful because it exploited the use of common default credentials (such as a username and password being set by the manufacturer as ‘admin’) and poor security configuration of devices. Ultimately, this facilitated attacks on a range of commercial and social media services and included an outage of streaming services such as Netflix. An evolution of Mirai, called Reaper, has also been discovered. Reaper used publicly and easily available exploits that remained unfixed (patched) and highlighted the problem around non patching of known security vulnerabilities, allowing attackers to utilise them to cause harm. -
Trojans and Malware on the Internet an Update
Attitude Adjustment: Trojans and Malware on the Internet An Update Sarah Gordon and David Chess IBM Thomas J. Watson Research Center Yorktown Heights, NY Abstract This paper continues our examination of Trojan horses on the Internet; their prevalence, technical structure and impact. It explores the type and scope of threats encountered on the Internet - throughout history until today. It examines user attitudes and considers ways in which those attitudes can actively affect your organization’s vulnerability to Trojanizations of various types. It discusses the status of hostile active content on the Internet, including threats from Java and ActiveX, and re-examines the impact of these types of threats to Internet users in the real world. Observations related to the role of the antivirus industry in solving the problem are considered. Throughout the paper, technical and policy based strategies for minimizing the risk of damage from various types of Trojan horses on the Internet are presented This paper represents an update and summary of our research from Where There's Smoke There's Mirrors: The Truth About Trojan Horses on the Internet, presented at the Eighth International Virus Bulletin Conference in Munich Germany, October 1998, and Attitude Adjustment: Trojans and Malware on the Internet, presented at the European Institute for Computer Antivirus Research in Aalborg, Denmark, March 1999. Significant portions of those works are included here in original form. Descriptors: fidonet, internet, password stealing trojan, trojanized system, trojanized application, user behavior, java, activex, security policy, trojan horse, computer virus Attitude Adjustment: Trojans and Malware on the Internet Trojans On the Internet… Ever since the city of Troy was sacked by way of the apparently innocuous but ultimately deadly Trojan horse, the term has been used to talk about something that appears to be beneficial, but which hides an attack within.