Caustics 1 Fermat's Principle

Total Page:16

File Type:pdf, Size:1020Kb

Caustics 1 Fermat's Principle CS448: Topics in Computer Graphics Lecture 20 Mathematical Mo dels for Computer Graphics Stanford University Tuesday, 6 January 1998 Caustics Lecture 20: Tuesday, 9 Decemb er 1997 Lecturer: Pat Hanrahan Scrib e: Christopher Stolte Reviewer: Tamara Munzner In this lecture, we discuss applications of di erential geometry within the eld of com- puter graphics. We will see how concepts discussed in earlier lectures can b e used to solve problems involving the geometry of optics. Sp eci cally,we will lo ok at Fermat's Principle, rays and wavefronts, and caustics. 1 Fermat's Principle In geometrical optics, we assume that the wave-like b ehaviour of light is insigni cant and thus mo del the b ehaviour of light using rays. Light emitted from a p oint is assumed to travel along sucha ray through space. In an e ort to explain the motion through space taken byrays as they pass through various media, Fermat develop ed his Principle of Least Action. The path of a lightray connecting two p oints is the one for which the time of transit, not the length, is a minimum. At the time that Fermat develop ed this principle, his justi cation was more mystical than scienti c. His justi cation can b e summarized by the statement that nature is essentially lazy, and these rays are simply doing the least p ossible work. We can however develop a more useful formulation of the principle. We know from earlier lectures that the time along a curve through space can b e calculated as Z Z ds dt = S t= ds =dt ds c We also know that ds =dt is velo city, which for lightisknowtobe = where is the dt refractive index of the medium. Therefore, wehave 2 CS448: Lecture 20 Z Z Z 1 ds = sds / sds S t= c c s We can thus de ne the optical path length from one p ointonaray to another as the geometric path length weighted by the refractive index of the media. Furthermore, we can now restate Fermat's Principle as Light travels along paths of stationary optical path length, where the opti- cal path length is a lo cal maximum or minimum with resp ect to any small variation in the path. Determining the path taken by a lightraybetween two p oints then b ecomes a simple matter of optimizing S tbetween the p oints. 2 Applications of Fermat's Principle We can make several observations as a result of Fermat's Principle which will prove useful as we explore the realm of geometric optics: 1. In a homogenous medium, lightrays are rectilinear. That is, within any medium where the index of refraction is constant, light travels in a straight line. 2. The angle of re ection o of a surface is equal to the angle of incidence. This is the Law of Re ection. We can also make some interesting and useful observations ab out conic surfaces. Conic surfaces are particulary useful in mirror optics - for example, the design of telescop es. We consider two conjugate p oints - two p oints that are p erfect images of each other. A salient prop erty of these conjugate p oints is that the optical path length of all rays connecting them is equal. Consider a conic surface such as an ellipse. An ellipse is de ned as the lo cus of all p oints such that the sum of the distances from each p ointtotwo xed p oints the fo ci is constant, as in Figure 1. The two fo ci of a mirrored ellipse must then b e optically conjugate p oints. A p oint source lo cated at one fo cus must b e imaged p erfectly at the other fo cus. CS448: Lecture 20 3 d2 d1 Figure 1: An el lipse. The ellipse is de ned as the lo cus of all p oints such that the sum of the distances from each p ointtotwo xed p oints is constant: d + d = c. 1 2 In the case of a parab ola, one fo cus has b ecome in nite. This can b e interpreted by saying that an aggregate of rays, parallel to one another and to the axis of a parab oloid after b eing re ected by the parab oloid, will pass through the fo cus of the parab oloid. The Newtonian telescop e leverages this fact in its design to collect and fo cus light from distant ob jects. In general, a conic surface can b e thoughtofashaving two fo ci and these fo ci will b e optically conjugate p oints. Figures 2 and 3 illustrate how this prop erty of conic surfaces and geometrical optics has b een applied in the design of the Cassegrainian telescop e and the Gregorian telescop e. As a side note, a construction called a \Cartesian Oval" is similar to an ellipse, but has weighted distances. That is, rather than b eing constrained by the equation d + d = c, 1 2 as in Figure 1, the oval is constrained by the equation n d + n d = c. The resulting 1 1 2 2 non-elliptical shap e will nevertheless havetwo p oints of p erfect fo cus. 3 Virtual Light Sources Wenow turn our fo cus to virtual light sources. In traditional ray tracing, a visual ray that encounters a re ective surface is b ounced o of that surface and cast in the direction of re ection. Similarly, visual rays are refracted through volumes. Eventually these visual rays reach a non-re ecting surface and the shading calculation is calculated at this p oint of intersection. This traditional mo del is depicted in Figure 4. Although this traditional ray tracing mo del do es allowustosimulate the e ect of seeing a scene through a re ective or refractive surface, it do es not extend to the simulation of refracted or re ected illumination. In other words, the shading calculation at the p oint of intersection is limited to the direct comp onents of illumination. 4 CS448: Lecture 20 A Hyperboloid Paraboloid B Figure 2: The Cassegrainian telescopecon guration Point A is where the fo cus of the parab oloid and the virtual fo cus of the hyp erb oloid coincide. Point B is the real fo cus of the hyp erb oloid. We can utilize di erential geometry to allow us to solve this more complex problem - determining the re ected illumination at a p oint on a surface. To do this, wemust cast rays from light sources so that they will re ect o of the mirrored surfaces and intersect the p oint b eing illuminated. When the light is re ected o the mirrored surfaces it is p ossible that the lightrays may diverge or converge dep ending on the curvature of the re ective surface at the p oint of re ection. Thus there are twokey problems that must b e solved - determining which lightrays will intersect the p oint b eing illuminated and calculating the prop er irradiance at that p oint. The problem of re ected illumination is depicted in Figure 5. Finding the paths from the light source to the p oint P that re ect o of the mirrored surface is not as complex as might b e assumed. A p ossible path from the light source to the p oint P is depicted in Figure 5. The optical path length is q q 2 2 dx= s x + p x CS448: Lecture 20 5 Ellipsoid A Paraboloid B Figure 3: The Gregorian telescopecon guration Point A is where the fo cus of the parab oloid and one of the fo ci of the ellipsoid coincide. Point B is the other fo cus of the ellipsoid. According to Fermat's Principle, wewant to optimize dx in order to determine the path of the lightrays. If the mirrored surface is de ned by g x = 0 then we can optimize dx sub ject to the constraint that x lie on the surface de ned by g x using the technique of Lagrange multipliers: rdx+ rg x = 0 g x = 0 Solving these equations yields paths of lo cally extremal length. Recall from our earlier discussion of conic gures that the two fo cal p oints of an ellipse are p erfect images of each other - the optical path lengths of all re ected rays connecting 6 CS448: Lecture 20 S Eye Light Ray Reflector Visual Ray P Figure 4: Re ected Visual Rays S Eye Reflector Visual Ray Light Ray P Figure 5: Re ected Ilumination them are equal. If we select s and p as our fo ci of a family of ellipsoids and vary the optical path length, we get a family of confo cal ellipsoids. The system of equations pro duced by the Lagrange multipliers have a simple geometric interpretation. The extremal p oints must not only lie on the surface de ned by g x=0, but they must also lie on the surface of one of these confo cal ellipsoids and the ellipsoid must b e tangent to the surface at the p ointofcontact. Figure 6 depicts this geometric CS448: Lecture 20 7 S X P Figure 6: Osculating Ellipsoid interpretation. 4 Rays and Wavefronts In order to b e able to compute the prop er irradiance at a p oint b eing illuminated, we will need to determine if the rays of light from the light source are converging or diverging at the p oint. A given light will b e the source of manyrays, and the paths of the rays emitted are determined by the following equation: Z sds S = We will de ne a wavefront W to b e the surface de ned by the p oints on eachrayat a constant s.
Recommended publications
  • Contents 1 Properties of Optical Systems
    Contents 1 Properties of Optical Systems ............................................................................................................... 7 1.1 Optical Properties of a Single Spherical Surface ........................................................................... 7 1.1.1 Planar Refractive Surfaces .................................................................................................... 7 1.1.2 Spherical Refractive Surfaces ................................................................................................ 7 1.1.3 Reflective Surfaces .............................................................................................................. 10 1.1.4 Gaussian Imaging Equation ................................................................................................. 11 1.1.5 Newtonian Imaging Equation.............................................................................................. 13 1.1.6 The Thin Lens ...................................................................................................................... 13 1.2 Aperture and Field Stops ............................................................................................................ 14 1.2.1 Aperture Stop Definition ..................................................................................................... 14 1.2.2 Marginal and Chief Rays ...................................................................................................... 14 1.2.3 Vignetting ...........................................................................................................................
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Introduction to the Ray Optics Module
    INTRODUCTION TO Ray Optics Module Introduction to the Ray Optics Module © 1998–2020 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; 10,019,544; 10,650,177; and 10,776,541. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/ trademarks. Version: COMSOL 5.6 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates •COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community •Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number.
    [Show full text]
  • Using Elimination to Describe Maxwell Curves Lucas P
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2006 Using elimination to describe Maxwell curves Lucas P. Beverlin Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Applied Mathematics Commons Recommended Citation Beverlin, Lucas P., "Using elimination to describe Maxwell curves" (2006). LSU Master's Theses. 2879. https://digitalcommons.lsu.edu/gradschool_theses/2879 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. USING ELIMINATION TO DESCRIBE MAXWELL CURVES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial ful¯llment of the requirements for the degree of Master of Science in The Department of Mathematics by Lucas Paul Beverlin B.S., Rose-Hulman Institute of Technology, 2002 August 2006 Acknowledgments This dissertation would not be possible without several contributions. I would like to thank my thesis advisor Dr. James Madden for his many suggestions and his patience. I would also like to thank my other committee members Dr. Robert Perlis and Dr. Stephen Shipman for their help. I would like to thank my committee in the Experimental Statistics department for their understanding while I completed this project. And ¯nally I would like to thank my family for giving me the chance to achieve a higher education.
    [Show full text]
  • Ioan-Ioviţ Popescu Optics. I. Geometrical Optics
    Edited by Translated into English by Lidia Vianu Bogdan Voiculescu Wednesday 31 May 2017 Online Publication Press Release Ioan-Ioviţ Popescu Optics. I. Geometrical Optics Translated into English by Bogdan Voiculescu ISBN 978-606-760-105-3 Edited by Lidia Vianu Ioan-Ioviţ Popescu’s Optica geometrică de Ioan-Ioviţ Geometrical Optics is essentially Popescu se ocupă de buna a book about light rays: about aproximaţie a luminii sub forma de what can be seen in our raze (traiectorii). Numele autorului universe. The name of the le este cunoscut fizicienilor din author is well-known to lumea întreagă. Ioviţ este acela care physicists all over the world. He a prezis existenţa Etheronului încă is the scientist who predicted din anul 1982. Editura noastră a the Etheron in the year 1982. publicat nu demult cartea acelei We have already published the descoperiri absolut unice: Ether and book of that unique discovery: Etherons. A Possible Reappraisal of the Ether and Etherons. A Possible Concept of Ether, Reappraisal of the Concept of http://editura.mttlc.ro/iovit Ether, z-etherons.html . http://editura.mttlc.ro/i Studenţii facultăţii de fizică ovitz-etherons.html . din Bucureşti ştiau în anul 1988— What students have to aşa cum ştiam şi eu de la autorul know about the book we are însuşi—că această carte a fost publishing now is that it was îndelung scrisă de mână de către handwritten by its author over autor cu scopul de a fi publicată în and over again, dozens of facsimil: ea a fost rescrisă de la capăt times—formulas, drawings and la fiecare nouă corectură, şi au fost everything.
    [Show full text]
  • Module 5: Schlieren and Shadowgraph Lecture 26: Introduction to Schlieren and Shadowgraph
    Objectives_template Module 5: Schlieren and Shadowgraph Lecture 26: Introduction to schlieren and shadowgraph The Lecture Contains: Introduction Laser Schlieren Window Correction Shadowgraph Shadowgraph Governing Equation and Approximation Numerical Solution of the Poisson Equation Ray tracing through the KDP solution: Importance of the higher-order effects Correction Factor for Refraction at the glass-air interface Methodology for determining the supersaturation at each stage of the Experiment file:///G|/optical_measurement/lecture26/26_1.htm[5/7/2012 12:34:01 PM] Objectives_template Module 5: Schlieren and Shadowgraph Lecture 26: Introduction to schlieren and shadowgraph Introduction Closely related to the method of interferometry are and that employ variation in refractive index with density (and hence, temperature and concentration) to map a thermal or a species concentration field. With some changes, the flow field can itself be mapped. While image formation in interferometry is based on changes in the the refractive index with respect to a reference domain, schlieren uses the transverse derivative for image formation. In shadowgraph, effectively the second derivative (and in effect the Laplacian ) is utilized. These two methods use only a single beam of light. They find applications in combustion problems and high-speed flows involving shocks where the gradients in the refractive index are large. The schlieren method relies on beam refraction towards zones of higher refractive index. The shadowgraph method uses the change in light intensity due to beam expansion to describe the thermal/concentration field. Before describing the two methods in further detail, a comparison of interferometry (I), schlieren (Sch) and shadowgraph (Sgh) is first presented. The basis of this comparison will become clear when further details of the measurement procedures are described.
    [Show full text]
  • The Shallow Water Wave Ray Tracing Model SWRT
    The Shallow Water Wave Ray Tracing Model SWRT Prepared for: BMT ARGOSS Our reference: BMTA-SWRT Date of issue: 20 Apr 2016 Prepared for: BMT ARGOSS The Shallow Water Wave Ray Tracing Model SWRT Document Status Sheet Title : The Shallow Water Wave Ray Tracing Model SWRT Our reference : BMTA-SWRT Date of issue : 20 Apr 2016 Prepared for : BMT ARGOSS Author(s) : Peter Groenewoud (BMT ARGOSS) Distribution : BMT ARGOSS (BMT ARGOSS) Review history: Rev. Status Date Reviewers Comments 1 Final 20 Apr 2016 Ian Wade, Mark van der Putte and Rob Koenders Information contained in this document is commercial-in-confidence and should not be transmitted to a third party without prior written agreement of BMT ARGOSS. © Copyright BMT ARGOSS 2016. If you have questions regarding the contents of this document please contact us by sending an email to [email protected] or contact the author directly at [email protected]. 20 Apr 2016 Document Status Sheet Prepared for: BMT ARGOSS The Shallow Water Wave Ray Tracing Model SWRT Contents 1. INTRODUCTION ..................................................................................................................... 1 1.1. MODEL ENVIRONMENTS .............................................................................................................. 1 1.2. THE MODEL IN A NUTSHELL ......................................................................................................... 1 1.3. EXAMPLE MODEL CONFIGURATION OFF PANAMA .........................................................................
    [Show full text]
  • Interactive Rendering with Coherent Ray Tracing
    EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne Volume 20 (2001), Number 3 (Guest Editors) Interactive Rendering with Coherent Ray Tracing Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner Computer Graphics Group, Saarland University Abstract For almost two decades researchers have argued that ray tracing will eventually become faster than the rasteri- zation technique that completely dominates todays graphics hardware. However, this has not happened yet. Ray tracing is still exclusively being used for off-line rendering of photorealistic images and it is commonly believed that ray tracing is simply too costly to ever challenge rasterization-based algorithms for interactive use. However, there is hardly any scientific analysis that supports either point of view. In particular there is no evidence of where the crossover point might be, at which ray tracing would eventually become faster, or if such a point does exist at all. This paper provides several contributions to this discussion: We first present a highly optimized implementation of a ray tracer that improves performance by more than an order of magnitude compared to currently available ray tracers. The new algorithm makes better use of computational resources such as caches and SIMD instructions and better exploits image and object space coherence. Secondly, we show that this software implementation can challenge and even outperform high-end graphics hardware in interactive rendering performance for complex environments. We also provide an brief overview of the benefits of ray tracing over rasterization algorithms and point out the potential of interactive ray tracing both in hardware and software. 1. Introduction Ray tracing is famous for its ability to generate high-quality images but is also well-known for long rendering times due to its high computational cost.
    [Show full text]
  • Chapter 19/ Optical Properties
    Chapter 19 /Optical Properties The four notched and transpar- ent rods shown in this photograph demonstrate the phenomenon of photoelasticity. When elastically deformed, the optical properties (e.g., index of refraction) of a photoelastic specimen become anisotropic. Using a special optical system and polarized light, the stress distribution within the speci- men may be deduced from inter- ference fringes that are produced. These fringes within the four photoelastic specimens shown in the photograph indicate how the stress concentration and distribu- tion change with notch geometry for an axial tensile stress. (Photo- graph courtesy of Measurements Group, Inc., Raleigh, North Carolina.) Why Study the Optical Properties of Materials? When materials are exposed to electromagnetic radia- materials, we note that the performance of optical tion, it is sometimes important to be able to predict fibers is increased by introducing a gradual variation and alter their responses. This is possible when we are of the index of refraction (i.e., a graded index) at the familiar with their optical properties, and understand outer surface of the fiber. This is accomplished by the mechanisms responsible for their optical behaviors. the addition of specific impurities in controlled For example, in Section 19.14 on optical fiber concentrations. 766 Learning Objectives After careful study of this chapter you should be able to do the following: 1. Compute the energy of a photon given its fre- 5. Describe the mechanism of photon absorption quency and the value of Planck’s constant. for (a) high-purity insulators and semiconduc- 2. Briefly describe electronic polarization that re- tors, and (b) insulators and semiconductors that sults from electromagnetic radiation-atomic in- contain electrically active defects.
    [Show full text]
  • Nikon Binocular Handbook
    THE COMPLETE BINOCULAR HANDBOOK While Nikon engineers of semiconductor-manufactur- FINDING THE ing equipment employ our optics to create the world’s CONTENTS PERFECT BINOCULAR most precise instrumentation. For Nikon, delivering a peerless vision is second nature, strengthened over 4 BINOCULAR OPTICS 101 ZOOM BINOCULARS the decades through constant application. At Nikon WHAT “WATERPROOF” REALLY MEANS FOR YOUR NEEDS 5 THE RELATIONSHIP BETWEEN POWER, Sport Optics, our mission is not just to meet your THE DESIGN EYE RELIEF, AND FIELD OF VIEW The old adage “the better you understand some- PORRO PRISM BINOCULARS demands, but to exceed your expectations. ROOF PRISM BINOCULARS thing—the more you’ll appreciate it” is especially true 12-14 WHERE QUALITY AND with optics. Nikon’s goal in producing this guide is to 6-11 THE NUMBERS COUNT QUANTITY COUNT not only help you understand optics, but also the EYE RELIEF/EYECUP USAGE LENS COATINGS EXIT PUPIL ABERRATIONS difference a quality optic can make in your appre- REAL FIELD OF VIEW ED GLASS AND SECONDARY SPECTRUMS ciation and intensity of every rare, special and daily APPARENT FIELD OF VIEW viewing experience. FIELD OF VIEW AT 1000 METERS 15-17 HOW TO CHOOSE FIELD FLATTENING (SUPER-WIDE) SELECTING A BINOCULAR BASED Nikon’s WX BINOCULAR UPON INTENDED APPLICATION LIGHT DELIVERY RESOLUTION 18-19 BINOCULAR OPTICS INTERPUPILLARY DISTANCE GLOSSARY DIOPTER ADJUSTMENT FOCUSING MECHANISMS INTERNAL ANTIREFLECTION OPTICS FIRST The guiding principle behind every Nikon since 1917 product has always been to engineer it from the inside out. By creating an optical system specific to the function of each product, Nikon can better match the product attri- butes specifically to the needs of the user.
    [Show full text]
  • General Optics Design Part 2
    GENERAL OPTICS DESIGN PART 2 Martin Traub – Fraunhofer ILT [email protected] – Tel: +49 241 8906-342 © Fraunhofer ILT AGENDA Raytracing Fundamentals Aberration plots Merit function Correction of optical systems Optical materials Bulk materials Coatings Optimization of a simple optical system, evaluation of the system Seite 2 © Fraunhofer ILT Why raytracing? • Real paths of rays in optical systems differ more or less to paraxial paths of rays • These differences can be described by Seidel aberrations up to the 3rd order • The calculation of the Seidel aberrations does not provide any information of the higher order aberrations • Solution: numerical tracing of a large number of rays through the optical system • High accuracy for the description of the optical system • Fast calculation of the properties of the optical system • Automatic, numerical optimization of the system Seite 3 © Fraunhofer ILT Principle of raytracing 1. The system is described by a number of surfaces arranged between the object and image plane (shape of the surfaces and index of refraction) 2. Definition of the aperture(s) and the ray bundle(s) launched from the object (field of view) 3. Calculation of the paths of all rays through the whole optical system (from object to image plane) 4. Calculation and analysis of diagrams suited to describe the properties of the optical system 5. Optimizing of the optical system and redesign if necessary (optics design is a highly iterative process) Seite 4 © Fraunhofer ILT Sequential vs. non sequential raytracing 1. In sequential raytracing, the order of surfaces is predefined very fast and efficient calculations, but mainly limited to imaging optics, usually 100..1000 rays 2.
    [Show full text]
  • O10e “Michelson Interferometer”
    Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O10e “Michelson Interferometer” Tasks 1. Adjust a Michelson interferometer and determine the wavelength of a He-Ne laser. 2. Measure the change in the length of a piezoelectric actor when a voltage is applied. Plot the length change as a function of voltage and determine the sensitivity of the sensor. 3. Measure the dependence of the refractive index of air as a function of the air pressure p. Plot Δn(p) and calculate the index of refraction n0 at standard conditions. 4. Measure the length of a ferromagnetic rod as a function of an applied magnetic field. Plot the relative length change versus the applied field. 5. Determine the relative change in the length of a metal rod as a function of temperature and calculate the linear expansion coefficient. Literature Physics, P.A. Tipler 3. Ed., Vol. 2, Chap. 33-3 University Physics, H. Benson, Chap. 37.6 Physikalisches Praktikum, 13. Auflage, Hrsg. W. Schenk, F. Kremer, Optik, 2.0.1, 2.0.2, 2.4 Accessories He-Ne laser, various optical components for the setup of a Michelson interferometer, piezoelectric actor with mirror, laboratory power supply, electromagnet, ferromagnetic rod with mirror, metal rod with heating filament and mirror, vacuum chamber with hand pump. Keywords for preparation - Interference, coherence - Basic principle of the Michelson interferometer - Generation and properties of laser light - Index of refraction, standard conditions - Piezoelectricity, magnetostriction, thermal expansion 1 In this experiment you will work with high quality optical components. Work with great care! While operating the LASER do not look directly into the laser beam or its reflections! Basics The time and position dependence of a plane wave travelling in the positive (negative) z-direction is given by ψ =+ψωϕ[] 0 expitkz (m ) , (1) where ψ might denote e.g.
    [Show full text]