Coprinopsis Pseudomarcescibilis Fungal Planet Description Sheets 321

Total Page:16

File Type:pdf, Size:1020Kb

Coprinopsis Pseudomarcescibilis Fungal Planet Description Sheets 321 320 Persoonia – Volume 38, 2017 Coprinopsis pseudomarcescibilis Fungal Planet description sheets 321 Fungal Planet 594 – 20 June 2017 Coprinopsis pseudomarcescibilis Heykoop, G. Moreno & P. Alvarado, sp. nov. Etymology. Name reflects its morphological similarity to Coprinopsis Additional specimens examined. Coprinopsis pseudomarcescibilis: marcescibilis. SPAIN, Alcalá de Henares, Parque de los Cerros, under Salsola vermiculata on calcareous loamy soil, 4 Dec. 2014, M. Heykoop, G. Moreno & M. Lizárraga, Classification — Psathyrellaceae, Agaricales, Agaricomy- paratype AH 33710, ITS sequence GenBank KY698009; ibid., AH33712, ITS cetes. sequences GenBank KY698007; Alcalá de Henares, Campus Universidad de Alcalá, on calcareous soil among grasses, 1 Dec. 2016, J.A. Picado (paratype Cap 12–50 mm broad, 10–30 mm high, convex to conical AH 33725, ITS sequence GenBank KY698006). Coprinopsis udicola: SPAIN, convex, with prominent umbo, glabrous, sometimes somewhat Alcalá de Henares, El Gurugú, under Ulmus pumila and Dactylis glomerata in wrinkled, orange brown when young, then dark beige brown or border of Pinus halepensis wood, 12 Dec. 2014, G. Moreno & M. Heykoop, date colour, hygrophanous, after drying it becomes first pale AH 33714, ITS, LSU sequences GenBank KY698004, KY698005; ibid., AH greyish beige to ochraceous beige, then greyish white. Margin 33715, ITS, LSU sequences GenBank KY698002, KY698003. in some specimens somewhat incurved, faintly striate when Notes — Coprinopsis pseudomarcescibilis is characterised moist. Veil white, abundant in young specimens forming a firm by its moderately large basidiocarps with appendiculate veil collar, connecting margin of cap with stem and in addition a splitting into more or less irregular flocci, the absence of pleuro- layer of radially arranged fibrils present in a 1–2 mm broad cystidia, and the large and dark spores (11–16.5(–17) × 6–8 µm). zone along margin; later, while detaching itself from stem, the In our ITS phylogeny Coprinopsis pseudomarcescibilis is in- collar forms an appendiculate belt soon splitting into more or cluded in a clade together with C. marcescibilis and C. musae, less irregular flocci; finally, in older specimens veil evanes- the latter recently described by Örstadius et al. (2015). All three cent and progressively disappearing. Gills close, ascending, species are psathyrelloid members of Coprinopsis which share adnate, first greyish, then blackish, with white fimbriate edge; the presence of a pileipellis forming a cutis and the absence lamellulae present. Stem (25–)65–130 × 2–7 mm, cylindrical, of pleurocystidia. Coprinopsis musae differs from C. pseudo- central, hollow, longitudinally striate (more pronounced in the marcescibilis in having smaller and paler spores and smaller upper part), white with pale ochraceous tinges; apex pruinose, basidiomata. Coprinopsis pseudomarcescibilis is genetically and the lower part covered with small white fibrils. Odour not close to C. marcescibilis (2.21 % nucleotide differences in distinctive. Spores 11–16.5(–17) × 6–8 µm, av. 13.3–14.5 × the ITS sequence, 11/497), but it differs from the latter by its 6.9–7.2 µm (4 collections), Q 1.86–2.08, ellipsoid, smooth, av slightly longer spores, 13.3–14.5 µm (mean values 4 coll.) vs with apical germ pore, in NH OH (10 %) reddish brown to 4 11.6–12.8 (mean values 18 coll.; Kits van Waveren 1985), and orange brown. Basidia 4-spored, 20–35 × 11–13 µm, clavate, the veil splitting into more irregular flocci on cap margin instead hyaline; pseudoparaphyses often seen. Pleurocystidia not ob- of triangular denticles. However, C. pseudomarcescibilis and served. Marginal cells: cheilocystidia 25–40 × 11–15 µm, very C. marcescibilis seem to be sibling species (i.e., cryptic sister abundant and densely packed, narrowly utriform, sometimes species; Bickford et al. 2006) which are difficult to separate subcapitate; sphaeropedunculate and clavate cells extremely only based on morphology. rare and difficult to observe, e.g. 16 × 12 µm; all cells thin-walled, colourless. Hymenophoral trama in NH4OH (10 %) consisting of hyaline thin-walled hyphae, without encrustations. Pileipellis DQ389724 Lacrymaria lacrymabunda a cutis consisting of a layer of thin elongate hyphae 8–18 µm FN396145 ‘Psathyrella lutensis’ 1.00/100 diam, on top of a much thicker layer of more cellular struc- KC992967 Coprinopsis udicola TYPE C. udicola AH33715 ture consisting of broadly ellipsoid, subglobose or irregularly AH33714 shaped cells, up to 40 µm diam. Clamp connections present. DQ389727 Coprinopsis pannucioides 0.99/96 KC992959 Psathyrella submicrospora C. submicrospora Stipitipellis a cutis consisting of elongate septate hyphae 5–12 1.00/100 HQ847053 Psathyrella submicrospora FN396122 Coprinus coniophorus 1.00/99 µm diam. Caulocystidia abundant, similar in size and shape to 1.00/87 FM163176 Coprinus bellulus FN396140 Coprinopsis utrifer cheilocystidia. Veil fibrillose consisting of elongate and septate FN396121 Coprinus cortinatus hyaline hyphae, 3–11 µm diam; many of these hyphae ending 1.00/100 JF907848 Coprinopsis nivea HQ847032 Coprinopsis nivea in terminal cystidia, 34–60 × 10–18 µm, utriform to subcapitate AB854625 Coprinopsis sp. 1.00/100 1.00/100 AB854626 Coprinopsis sp. or cylindrical, which probably are caulocystidia detached from FM163181 Coprinopsis pseudonivea stem together with veil. KC992965 Coprinopsis musae 1.00/87 FM878021 Psathyrella marcescibilis C. marcescibilis Habitat & Distribution — Growing solitary to gregarious on 1.00/98 FM878020 Coprinopsis marcescibilis 0.97/95 DQ389728 Coprinopsis marcescibilis calcareous loamy soil under Salsola vermiculata or different AM076652 Uncultured 0.97/78 gramineae. So far known from Spain, Germany, Italy (Sicily), AM076651 Uncultured UDB028407 Coprinopsis sp. C. pseudomarcescibilis sp. nov. and Finland but probably often mistaken for Coprinopsis marce- 1.00/100 AH33725 AH33712 scibilis. AH33711 HOLOTYPE AH33710 Typus. SPAIN, Alcalá de Henares, Parque de los Cerros, under Salsola vermiculata on calcareous loamy soil, 4 Dec. 2014, M. Heykoop, G. Moreno & M. Lizárraga (holotype AH 33711, ITS and LSU sequences GenBank other Coprinopsis KY698008 and MF033345, MycoBank MB820344). 0.05 Colour illustrations. Spain, Alcalá de Henares, El Gurugú, calcareous Consensus phylogram obtained in MrBayes v. 3.1 from an ITS loamy soil with Salsola vermiculata, where the holotype was collected; alignment of genus Coprinopsis. Values next to nodes represent basidiomata; cheilocystidia; cheilocystidia basidium and spores; basidia; Bayesian PP and maximum likelihood BP (RAxML). Only nodes spores under LM; smooth spores with central germ pore under SEM (from the holotype); scale bars = 1 cm (basidiomata), 10 µm (cheilocystidia), 10 supported by > 0.95 PP or > 70 % BP are annotated. The main µm (cheilocystidia, basidium and spores), 10 µm (basidia), 10 µm (spores group of sequences has been collapsed for publication. under LM), 2 µm (spores under SEM). Michel Heykoop & Gabriel Moreno, Departamento de Ciencias de la Vida (Área de Botánica), Universidad de Alcalá, E–28805 Alcalá de Henares, Madrid, Spain; e-mail: [email protected] & [email protected] Pablo Alvarado, ALVALAB, C/ La Rochela n° 47, E-39012 Santander, Spain; e-mail: [email protected] © 2017 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute.
Recommended publications
  • Agaricales, Basidiomycota) Occurring in Punjab, India
    Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms.
    [Show full text]
  • Lacrymaria Lacrymabunda Lacrymaria
    © Demetrio Merino Alcántara [email protected] Condiciones de uso Lacrymaria lacrymabunda (Bull.) Pat., Hyménomyc. Eur. (Paris): 123 (1887) Psathyrellaceae, Agaricales, Agaricomycetidae, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi = Agaricus areolatus Klotzsch, in Smith, Engl. Fl., Fungi (Edn 2) (London) 5(2): 112 (1836) = Agaricus areolatus Klotzsch, in Smith, Engl. Fl., Fungi (Edn 2) (London) 5(2): 112 (1836) var. areolatus ≡ Agaricus lacrymabundus Bull., Herb. Fr. (Paris) 5: tab. 194 (1785) ≡ Agaricus lacrymabundus Bull., Herb. Fr. (Paris) 5: tab. 194 (1785) var. lacrymabundus ≡ Agaricus lacrymabundus var. velutinus (Pers.) Fr., Syst. mycol. (Lundae) 1: 288 (1821) ≡ Agaricus lacrymabundus ß velutinus (Pers.) Fr., Syst. mycol. (Lundae) 1: 288 (1821) = Agaricus macrourus Pers., in Hoffmann, Naturgetr. Abbild. Beschr. Schwämme (Prague) 3 (1793) = Agaricus velutinus Pers., Syn. meth. fung. (Göttingen) 2: 409 (1801) = Agaricus velutinus var. macrourus (Pers.) Pers., Syn. meth. fung. (Göttingen) 2: 410 (1801) = Coprinus velutinus (Pers.) Gray, Nat. Arr. Brit. Pl. (London) 1: 633 (1821) = Drosophila velutina (Pers.) Kühner & Romagn., Fl. Analyt. Champ. Supér. (Paris): 371 (1953) ≡ Geophila lacrymabunda (Bull.) Quél., Enchir. fung. (Paris): 113 (1886) ≡ Geophila lacrymabunda (Bull.) Quél., Enchir. fung. (Paris): 113 (1886) var. lacrymabunda = Hypholoma aggregatum Peck, Ann. Rep. Reg. N.Y. St. Mus. 46: 28 (1894) [1893] = Hypholoma boughtoni Peck, Bull. N.Y. St. Mus. 139: 23 (1910) ≡ Hypholoma lacrymabundum (Bull.) Sacc. [as 'lacrimabundum'], Syll. fung. (Abellini) 5: 1033 (1887) = Hypholoma velutinum (Pers.) P. Kumm., Führ. Pilzk. (Zerbst): 72 (1871) ≡ Lacrymaria lacrymabunda f. gracillima J.E. Lange, Fl. Agaric. Danic. 4: 72 (1939) ≡ Lacrymaria lacrymabunda (Bull.) Pat., Hyménomyc. Eur. (Paris): 123 (1887) f. lacrymabunda ≡ Lacrymaria lacrymabunda (Bull.) Pat., Hyménomyc. Eur.
    [Show full text]
  • Postharvest Biochemical Characteristics and Ultrastructure of Coprinus Comatus
    Postharvest biochemical characteristics and ultrastructure of Coprinus comatus Yi Peng1,2, Tongling Li2, Huaming Jiang3, Yunfu Gu1, Qiang Chen1, Cairong Yang2,4, Wei liang Qi2, Song-qing Liu2,4 and Xiaoping Zhang1 1 College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China 2 College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China 3 Sichuan Vocational and Technical College, Suining, Sichuan, China 4 Institute of Microbiology, Chengdu Normal University, Chengdu, Sichuan, China ABSTRACT Background. Coprinus comatus is a novel cultivated edible fungus, hailed as a new preeminent breed of mushroom. However, C. comatus is difficult to keep fresh at room temperature after harvest due to high respiration, browning, self-dissolve and lack of physical protection. Methods. In order to extend the shelf life of C. comatus and reduce its loss in storage, changes in quality, biochemical content, cell wall metabolism and ultrastructure of C. comatus (C.c77) under 4 ◦C and 90% RH storage regimes were investigated in this study. Results. The results showed that: (1) After 10 days of storage, mushrooms appeared acutely browning, cap opening and flowing black juice, rendering the mushrooms commercially unacceptable. (2) The activity of SOD, CAT, POD gradually increased, peaked at the day 10, up to 31.62 U g−1 FW, 16.51 U g−1 FW, 0.33 U g−1 FW, respectively. High SOD, CAT, POD activity could be beneficial in protecting cells from ROS-induced injuries, alleviating lipid peroxidation and stabilizing membrane integrity. (3) The activities of chitinase, β-1,3-glucanase were significantly increased. Higher degrees of cell wall degradation observed during storage might be due to those enzymes' high activities.
    [Show full text]
  • Agarics-Stature-Types.Pdf
    Gilled Mushroom Genera of Chicago Region, by stature type and spore print color. Patrick Leacock – June 2016 Pale spores = white, buff, cream, pale green to Pinkish spores Brown spores = orange, Dark spores = dark olive, pale lilac, pale pink, yellow to pale = salmon, yellowish brown, rust purplish brown, orange pinkish brown brown, cinnamon, clay chocolate brown, Stature Type brown smoky, black Amanitoid Amanita [Agaricus] Vaginatoid Amanita Volvariella, [Agaricus, Coprinus+] Volvopluteus Lepiotoid Amanita, Lepiota+, Limacella Agaricus, Coprinus+ Pluteotoid [Amanita, Lepiota+] Limacella Pluteus, Bolbitius [Agaricus], Coprinus+ [Volvariella] Armillarioid [Amanita], Armillaria, Hygrophorus, Limacella, Agrocybe, Cortinarius, Coprinus+, Hypholoma, Neolentinus, Pleurotus, Tricholoma Cyclocybe, Gymnopilus Lacrymaria, Stropharia Hebeloma, Hemipholiota, Hemistropharia, Inocybe, Pholiota Tricholomatoid Clitocybe, Hygrophorus, Laccaria, Lactarius, Entoloma Cortinarius, Hebeloma, Lyophyllum, Megacollybia, Melanoleuca, Inocybe, Pholiota Russula, Tricholoma, Tricholomopsis Naucorioid Clitocybe, Hygrophorus, Hypsizygus, Laccaria, Entoloma Agrocybe, Cortinarius, Hypholoma Lactarius, Rhodocollybia, Rugosomyces, Hebeloma, Gymnopilus, Russula, Tricholoma Pholiota, Simocybe Clitocyboid Ampulloclitocybe, Armillaria, Cantharellus, Clitopilus Paxillus, [Pholiota], Clitocybe, Hygrophoropsis, Hygrophorus, Phylloporus, Tapinella Laccaria, Lactarius, Lactifluus, Lentinus, Leucopaxillus, Lyophyllum, Omphalotus, Panus, Russula Galerinoid Galerina, Pholiotina, Coprinus+,
    [Show full text]
  • The Good, the Bad and the Tasty: the Many Roles of Mushrooms
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 85: 125–157. The good, the bad and the tasty: The many roles of mushrooms K.M.J. de Mattos-Shipley1,2, K.L. Ford1, F. Alberti1,3, A.M. Banks1,4, A.M. Bailey1, and G.D. Foster1* 1School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 2School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK; 3School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; 4School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK *Correspondence: G.D. Foster, [email protected] Abstract: Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the “Forgotten Kingdom”, fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or ‘roles’, for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category.
    [Show full text]
  • Foray Report
    TH THE 20 NZ FUNGAL FORAY, WESTPORT Petra White Introduction The New Zealand Fungal Foray is an annual event held in May each year at a different site in the country. It is intended for both amateur and professional mycologists. The amateurs range from members of the public with a general interest in natural history, to photographers, to gastronomes, to those with an extensive knowledge on New Zealand's fungi. Initiated in 1986 with a foray at Kauaeranga Valley, Coromandel Peninsula, the event has since been held in such varying places as Tangihua, the Catlins, Wanganui, Ruatahuna, Haast and Nelson. After last year‘s foray at Ohakune 438 fungi collections representing 298 taxa were deposited into the PDD national collection. Three collections were of species currently flagged as Nationally Critical in DoC‘s classification (Ramaria junquilleovertex, Squamanita squarrulosa, Russula littoralis), and 67 collections representing 44 taxa were of records flagged as Data Deficient. The list is published on the FUNNZ website. th The 20 annual NZ Fungal Foray was held this year from 7–13 May at the University of Canterbury Field Station in Westport. There were 66 professional and amateur mycologists staying for various durations during the week. We had visitors from Austria, Australia, Thailand, Sweden, England, Tasmania, Japan and USA. Each day‘s foraying involved collecting in the field and then identifying our finds back at the Field Centre, labelling them and displaying them on tables set aside for the purpose. Many of the collections were then dried to take back to the Landcare Research herbarium in Auckland.
    [Show full text]
  • A New Genus and Four New Species in the /Psathyrella S.L. Clade from China
    A peer-reviewed open-access journal MycoKeys 80: 115–131 (2021) doi: 10.3897/mycokeys.80.65123 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research A new genus and four new species in the /Psathyrella s.l. clade from China Tolgor Bau1, Jun-Qing Yan2 1 Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Af- fairs, Jilin Agricultural University, Changchun 130118, China 2 Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China Corresponding authors: Tolgor Bau ([email protected]); Jun-Qing Yan ([email protected]) Academic editor: Alfredo Vizzini | Received 27 February 2021 | Accepted 15 May 2021 | Published 26 May 2021 Citation: Bau T, Yan J-Q (2021) A new genus and four new species in the /Psathyrella s.l. clade from China. MycoKeys 80: 115–131. https://doi.org/10.3897/mycokeys.80.65123 Abstract Based on traditional morphological and phylogenetic analyses (ITS, LSU, tef-1α and β-tub) of psathyrel- loid specimens collected from China, four new species are here described: Heteropsathyrella macrocystidia, Psathyrella amygdalinospora, P. piluliformoides, and P. truncatisporoides. H. macrocystidia forms a distinct lineage and groups together with Cystoagaricus, Kauffmania, and Typhrasa in the /Psathyrella s.l. clade, based on the Maximum Likelihood and Bayesian analyses. Thus, the monospecific genusHeteropsathyrella gen. nov. is introduced for the single species. Detailed descriptions, colour photos, and illustrations are presented in this paper. Keywords Agaricales, Basidiomycete, four new taxa, Psathyrellaceae, taxonomy Introduction Psathyrella (Fr.) Quél. is characterized by usually fragile basidiomata, a hygrophanous pileus, brown to black-brown spore prints, always present cheilocystidia and basidi- ospores fading to greyish in concentrated sulphuric acid (H2SO4) (Kits van Waveren 1985; Örstadius et al.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Bulk Isolation of Basidiospores from Wild Mushrooms by Electrostatic Attraction with Low Risk of Microbial Contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2*
    Lakkireddy and Kües AMB Expr (2017) 7:28 DOI 10.1186/s13568-017-0326-0 ORIGINAL ARTICLE Open Access Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2* Abstract The basidiospores of most Agaricomycetes are ballistospores. They are propelled off from their basidia at maturity when Buller’s drop develops at high humidity at the hilar spore appendix and fuses with a liquid film formed on the adaxial side of the spore. Spores are catapulted into the free air space between hymenia and fall then out of the mushroom’s cap by gravity. Here we show for 66 different species that ballistospores from mushrooms can be attracted against gravity to electrostatic charged plastic surfaces. Charges on basidiospores can influence this effect. We used this feature to selectively collect basidiospores in sterile plastic Petri-dish lids from mushrooms which were positioned upside-down onto wet paper tissues for spore release into the air. Bulks of 104 to >107 spores were obtained overnight in the plastic lids above the reversed fruiting bodies, between 104 and 106 spores already after 2–4 h incubation. In plating tests on agar medium, we rarely observed in the harvested spore solutions contamina- tions by other fungi (mostly none to up to in 10% of samples in different test series) and infrequently by bacteria (in between 0 and 22% of samples of test series) which could mostly be suppressed by bactericides. We thus show that it is possible to obtain clean basidiospore samples from wild mushrooms.
    [Show full text]
  • Fungi Determined in Ankara University Tandoğan Campus Area (Ankara-Turkey)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 20(1): 47-55, 2019 ISSN 2147-0294, e-ISSN 2528-9691 Research Article DOI: 10.23902/trkjnat.521256 FUNGI DETERMINED IN ANKARA UNIVERSITY TANDOĞAN CAMPUS AREA (ANKARA-TURKEY) Ilgaz AKATA1*, Deniz ALTUNTAŞ1, Şanlı KABAKTEPE2 1Ankara University, Faculty of Science, Department of Biology, Ankara, TURKEY 2Turgut Ozal University, Battalgazi Vocational School, Battalgazi, Malatya, TURKEY *Corresponding author: ORCID ID: orcid.org/0000-0002-1731-1302, e-mail: [email protected] Cite this article as: Akata I., Altuntaş D., Kabaktepe Ş. 2019. Fungi Determined in Ankara University Tandoğan Campus Area (Ankara-Turkey). Trakya Univ J Nat Sci, 20(1): 47-55, DOI: 10.23902/trkjnat.521256 Received: 02 February 2019, Accepted: 14 March 2019, Online First: 15 March 2019, Published: 15 April 2019 Abstract: The current study is based on fungi and infected host plant samples collected from Ankara University Tandoğan Campus (Ankara) between 2017 and 2019. As a result of the field and laboratory studies, 148 fungal species were identified. With the addition of formerly recorded 14 species in the study area, a total of 162 species belonging to 87 genera, 49 families, and 17 orders were listed. Key words: Ascomycota, Basidiomycota, Ankara, Turkey. Özet: Bu çalışma, Ankara Üniversitesi Tandoğan Kampüsü'nden (Ankara) 2017 ve 2019 yılları arasında toplanan mantar ve enfekte olmuş konukçu bitki örneklerine dayanmaktadır. Arazi ve laboratuvar çalışmaları sonucunda 148 mantar türü tespit edilmiştir. Daha önce bildirilen 14 tür dahil olmak üzere 17 ordo, 49 familya, 87 cinse mensup 162 tür listelenmiştir. Introduction Ankara, the capital city of Turkey, is situated in the compiled literature data were published as checklists in center of Anatolia, surrounded by Çankırı in the north, different times (Bahçecioğlu & Kabaktepe 2012, Doğan Bolu in the northwest, Kırşehir, and Kırıkkale in the east, et al.
    [Show full text]
  • Coprinopsis Rugosomagnispora: a Distinct New Coprinoid Species from Poland (Central Europe)
    Plant Syst Evol DOI 10.1007/s00606-017-1418-7 ORIGINAL ARTICLE Coprinopsis rugosomagnispora: a distinct new coprinoid species from Poland (Central Europe) 1 2 3,4 5 Błazej_ Gierczyk • Pamela Rodriguez-Flakus • Marcin Pietras • Mirosław Gryc • 6 7 Waldemar Czerniawski • Marcin Pia˛tek Received: 3 November 2016 / Accepted: 31 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract A new coprinoid fungus, Coprinopsis rugoso- evolutionary trees recovered C. rugosomagnispora within a magnispora, is described from Poland (Central Europe). Its lineage containing species having morphological charac- macromorphological characters are similar to species ters of the subsection Lanatuli (though within the so-called belonging to the subsection Nivei of Coprinus s.l. How- Atramentarii clade) that contradicts its morphological ever, C. rugosomagnispora has unique micromorphologi- similarity to members of the subsection Nivei. cal characters: very large, ornamented spores, voluminous basidia and cystidia, and smooth veil elements. The large Keywords Agaricales Á Coprinopsis Á Coprinoid fungi Á spores and pattern of spore ornamentation (densely pitted) Molecular phylogeny Á Spore ornamentation Á Taxonomy make this species unique within all coprinoid species described so far. The structure (arrangement and shape) of veil elements in C. rugosomagnispora is intermediate Introduction between members of the subsections Nivei and Lanatuli of Coprinus s.l. Molecular phylogenetic analyses, based on The coprinoid fungi are a highly diverse and polyphyletic single-locus (ITS) maximum likelihood and Bayesian group of the order Agaricales, which species show a unique set of characters: presence of dark spores, deliquescent basidiocarps that often undergo autolysis, and pseudopa- Handling editor: Miroslav Kolarˇ´ık.
    [Show full text]
  • Phylogeny and Character Evolution of the Coprinoid Mushroom Genus <I>Parasola</I> As Inferred from LSU and ITS Nrdna
    Persoonia 22, 2009: 28–37 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X422434 Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data L.G. Nagy1, S. Kocsubé1, T. Papp1, C. Vágvölgyi1 Key words Abstract Phylogenetic relationships, species concepts and morphological evolution of the coprinoid mushroom genus Parasola were studied. A combined dataset of nuclear ribosomal ITS and LSU sequences was used to infer Agaricales phylogenetic relationships of Parasola species and several outgroup taxa. Clades recovered in the phylogenetic Coprinus section Glabri analyses corresponded well to morphologically discernable species, although in the case of P. leiocephala, P. lila- deliquescence tincta and P. plicatilis amended concepts proved necessary. Parasola galericuliformis and P. hemerobia are shown gap coding to be synonymous with P. leiocephala and P. plicatilis, respectively. By mapping morphological characters on the morphological traits phylogeny, it is shown that the emergence of deliquescent Parasola taxa was accompanied by the development Psathyrella of pleurocystidia, brachybasidia and a plicate pileus. Spore shape and the position of the germ pore on the spores species concept showed definite evolutionary trends within the group: from ellipsoid the former becomes more voluminous and heart- shaped, the latter evolves from central to eccentric in taxa referred to as ‘crown’ Parasola species. The results are discussed and compared to other Coprinus s.l. and Psathyrella taxa. Homoplasy and phylogenetic significance of various morphological characters, as well as indels in ITS and LSU sequences, are also evaluated. Article info Received: 12 September 2008; Accepted: 8 January 2009; Published: 16 February 2009.
    [Show full text]