Clinical Neurophysiology Fellowship Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Neurophysiology Fellowship Handbook CLINICAL NEUROPHYSIOLOGY FELLOWSHIP HANDBOOK DEPARTMENT OF NEUROLOGY Academic Year 2016 - 2017 The University of Kansas Medical Center Department of Neurology Richard J. Barohn, MD Professor and Chairman Mazen M. Dimachkie, MD Professor Director, Clinical Neurophysiology Fellowship Program Mamatha Pasnoor, MD Associate Professor Associate Director, Clinical Neurophysiology Fellowship Program Paula Mengel, Education Coordinator [email protected] The University of Kansas Department of Neurology 3599 Rainbow Blvd, MS 2012 Kansas City, KS 66160 913-588-6970 913/588-6996 – Paula Mengel 913/588-6965 – Office Fax 1 Table of Contents Welcome .......................................................................................................................................................................................................4 Fellowship Rotations ...............................................................................................................................................................................5 Program Goals and Objectives by Rotation ............................................................................................................................. 6-42 Program Eligibility ......................................................................................................................................................................... 43-45 Supervision of Fellows .................................................................................................................................................................. 45-48 Program Administration ............................................................................................................................................................. 48-50 Rotation Schedule ................................................................................................................................................................................. 51 Educational Programs .................................................................................................................................................................. 51-53 Conference Schedules .................................................................................................................................................................... 54-59 Duty Hours ............................................................................................................................................................................................... 60 Hand-Off Policy ....................................................................................................................................................................................... 60 Fellow Call Duties .................................................................................................................................................................................. 61 Fatigue Mitigation .......................................................................................................................................................................... 61-62 Work Environment ............................................................................................................................................................................... 62 Library and Fellow Offices .................................................................................................................................................................. 62 Daily Patient List/Patient Encounter Documentation ............................................................................................................. 63 Medical Records Dictation ................................................................................................................................................................. 63 Faculty and Program Evaluations ................................................................................................................................................... 63 Fellow Evaluations ................................................................................................................................................................................ 63 Milestones ......................................................................................................................................................................................... 63-64 Exams ......................................................................................................................................................................................................... 64 Fellowship Coordinating Committee ...................................................................................................................................... 64-65 Clinical Competency Committee ...................................................................................................................................................... 65 Program Evaluation Committee ....................................................................................................................................................... 65 Professional Conduct .................................................................................................................................................................... 65-66 Medical Ethics ......................................................................................................................................................................................... 66 Responsibilities to Resident Education ........................................................................................................................................ 66 Promotional Guidelines ...................................................................................................................................................................... 66 Academic Discipline ...................................................................................................................................................................... 66-67 Fellow Stipends ...................................................................................................................................................................................... 67 Leave Policy ....................................................................................................................................................................................... 67-68 Resident Assistance and Access to Counseling ............................................................................................................................ 68 Benefits .............................................................................................................................................................................................. 68-69 Travel Procedures ................................................................................................................................................................................. 69 Holidays ............................................................................................................................................................................................. 69-70 Moonlighting Policy .............................................................................................................................................................................. 70 Risk Management .................................................................................................................................................................................. 70 Depositions and Medical/Legal Issues .......................................................................................................................................... 70 2 Annual Immunizations ........................................................................................................................................................................ 70 Fellows ................................................................................................................................................................................................ 71-73 Faculty ................................................................................................................................................................................................ 74-75 Appendices ...................................................................................................................................................................................... 76-123 A Specific Major Clinical Neurophysiology Disorders .............................................................................................. 76-77 B American Academy of Neurology Code of Professional Conduct .................................................................... 78-84 C Accreditation Council for Graduate Medical Education .................................................................................... 85-106 D Evaluation Forms ......................................................................................................................................................... 107-113 E Forms – Vacation, LOA ......................................................................................................................................................... 114 F Duty Hour
Recommended publications
  • Pediatric Eating Disorders
    5/17/2017 How to Identify and Address Eating Disorders in Your Practice Dr. Susan R. Brill Chief, Division of Adolescent Medicine The Children’s Hospital at Saint Peter’s University Hospital Clinical Associate Professor of Pediatrics Rutgers Robert Wood Johnson Medical School Disclosure Statement I have no financial interest or other relationship with any manufacturer/s of any commercial product/s which may be discussed at this activity Credit for several illustrations and charts goes to Dr.Nonyelum Ebigbo, MD. PGY-2 of Richmond University Medical Center, Tavleen Sandhu MD PGY-3 and Alex Schosheim MD , PGY-2 of Saint Peter’s University Hospital Epidemiology Eating disorders relatively common: Anorexia .5% prevalence, estimate of disorder 1- 3%; peak ages 14 and 18 Bulimia 1-5% adolescents,4.5% college students 90% of patients are female,>95% are Caucasian 1 5/17/2017 Percentage of High School Students Who Described Themselves As Slightly or Very Overweight, by Sex,* Grade, and Race/Ethnicity,* 2015 National Youth Risk Behavior Survey, 2015 Percentage of High School Students Who Were Overweight,* by Sex, Grade, and Race/Ethnicity,† 2015 * ≥ 85th percentile but <95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts National Youth Risk Behavior Survey, 2015 Percentage of High School Students Who Had Obesity,* by Sex,† Grade,† and Race/Ethnicity,† 2015 * ≥ 95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts †M > F; 10th > 12th; B > W, H > W (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category.
    [Show full text]
  • Welcome to the New Open Access Neurosci
    Editorial Welcome to the New Open Access NeuroSci Lucilla Parnetti 1,* , Jonathon Reay 2, Giuseppina Martella 3 , Rosario Francesco Donato 4 , Maurizio Memo 5, Ruth Morona 6, Frank Schubert 7 and Ana Adan 8,9 1 Centro Disturbi della Memoria, Laboratorio di Neurochimica Clinica, Clinica Neurologica, Università di Perugia, 06132 Perugia, Italy 2 Department of Psychology, Teesside University, Victoria, Victoria Rd, Middlesbrough TS3 6DR, UK; [email protected] 3 Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, and University of Rome Tor Vergata, 00143 Rome, Italy; [email protected] 4 Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; [email protected] 5 Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] 6 Department of Cell Biology, School of Biology, University Complutense of Madrid, Av. Jose Antonio Novais 12, 28040 Madrid, Spain; [email protected] 7 School of Biological Sciences, University of Portsmouth, Hampshire PO1 2DY, UK; [email protected] 8 Department of Clinical Psychology and Psychobiology, University of Barcelona, 08035 Barcelona, Spain; [email protected] 9 Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain * Correspondence: [email protected] Received: 6 August 2020; Accepted: 17 August 2020; Published: 3 September 2020 Message from Editor-in-Chief: Prof. Dr. Lucilla Parnetti With sincere satisfaction and pride, I present to you the new journal, NeuroSci, for which I am pleased to serve as editor-in-chief. To date, the world of neurology has been rapidly advancing, NeuroSci is a cross-disciplinary, open-access journal that offers an opportunity for presentation of novel data in the field of neurology and covers a broad spectrum of areas including neuroanatomy, neurophysiology, neuropharmacology, clinical research and clinical trials, molecular and cellular neuroscience, neuropsychology, cognitive and behavioral neuroscience, and computational neuroscience.
    [Show full text]
  • Research on Light and Sound
    Research on light and sound Welcome! I’ve spent the last five years reading all the available research on mind machines – and now I’ve pulled together the most accessible of this information as a way to encourage you to try this technology yourself. Mind machines are referred to in these reports in a number of ways: • BWS (Brainwave Synchronisers) • LS (light and sound devices) • AVS (audio visual stimulation) • Photic stimulation All refer to the same technology which is built into our range of mind machines. All our mind machines can generate all the frequencies mentioned in these reports. I’ve condensed some of the reports for readability – and because some of the data is repeated. For example I’ve taken out three paragraphs from the extract from Megabrain Power as the original full reports are included here. I’ve had the very good fortune to spend time with many of the people mentioned in these pages: Robert Austin, Tom Budzynski, Michael Hutchison, Julian Isaacs, Harold Russell and David Siever – all thorough and committed researchers at the cutting edge of peak performance technology. Have a great read. You don’t need to understand it all. I just hope you read enough to see for yourself that mind machines really do work, and you’re encouraged to try a unit in your own home, using our 100% money back satisfaction guarantee. Chris Payne, Managing Director, LifeTools Slow wave photic stimulation in the treatment of headache A Preliminary Report by Glen D Solomon, MD (printed in Headache, the official publication of the American Association for the Study of Headache, August 16, 1985) Acute muscle contraction headache Fifteen patients, 10 female and five male, aged 21 to 41 years (mean 33.4 years), were treated with slow wave photic stimulation.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Neuropathology of Dementia in Patients with Parkinson's Disease: a Systematic Review of Autopsy Studies
    Neurodegeneration J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-321111 on 23 August 2019. Downloaded from REVIEW Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies Callum Smith ,1 Naveed Malek,2 Katherine Grosset,1 Breda Cullen ,3 Steve Gentleman,4 Donald G Grosset1 ► Additional material is ABSTRact have other causes of cognitive impairment and published online only. To view Background Dementia is a common, debilitating dementia, such as comorbid Alzheimer’s disease please visit the journal online (http:// dx. doi. org/ 10. 1136/ feature of late Parkinson’s disease (PD). PD dementia (AD) or cerebrovascular disease. These pathologies jnnp- 2019- 321111). (PDD) is associated with α-synuclein propagation, but may be difficult to identify in vivo, as the clinical coexistent Alzheimer’s disease (AD) pathology may features often overlap with those of PDD, and there 1 Department of Neurology, coexist. Other pathologies (cerebrovascular, transactive are no definitive biomarkers. The differentiation Institute of Neurosciences, response DNA-binding protein 43 (TDP-43)) may of dementia type is an important consideration in Queen Elizabeth University Hospital, Glasgow, UK also influence cognition.W e aimed to describe the clinical research, as treatments under development 2Department of Neurology, neuropathology underlying dementia in PD. are specifically targeted against abnormal accumu- Ipswich Hospital NHS Trust, Methods Systematic review of autopsy studies lation of α-synuclein, which is the pathological Ipswich, UK 3 3 published in English involving PD cases with dementia. hallmark of PDD and DLB, or tau or amyloid-β, Institute of Health and 4 5 Wellbeing, College of Medical, Comparison groups included PD without dementia, AD, which underlie AD.
    [Show full text]
  • Electrophysiologic Monitoring in Neurointensive Care
    Ovid: Electrophysiologic monitoring in neurointensive care. Main Search Page Ask A LibrarianDisplay Knowledge BaseHelpLogoff Full Text Save Article TextEmail Article TextPrint Preview Electrophysiologic monitoring in neurointensive care Procaccio, Francesco MD*†; Polo, Alberto MD*; Lanteri, Paola MD†; Sala, ISSN: Author(s): Francesco MD† 1070- 5295 Issue: Volume 7(2), April 2001, pp 74-80 Accession: Publication Type: [Neuroscience] 00075198- Publisher: © 2001 Lippincott Williams & Wilkins, Inc. 200104000- University and City Hospital Neuroanesthesia and Intensive Care, Department 00004 of Neurological Sciences and Vision, Divisions of *Neurology and Full †Neurosurgery, Verona, Italy. Institution(s): Text Correspondence to Francesco Procaccio, MD, Neuroanesthesia and Intensive (PDF) Care, University and City Hospital, Pz Stefani, 1, 37124 Verona, Italy; e-mail: 69 K [email protected] Email Jumpstart Table of Contents: Find ≪ Neurologic complications in intensive care. Citing ≫ Pediatric neurologic emergencies. Articles ≪ Abstract Table Links of Cumulative evidence of potential benefits of Contents Abstract electroencephalography (EEG) and evoked potentials in About Complete Reference the management of patients with acute cerebral this ExternalResolverBasic damage has been confirmed. Continuous EEG Journal Outline monitoring is the best method for detecting ≫ nonconvulsive seizures and is strongly recommended for the treatment of status epilepticus. Continuously displayed, ● Abstract validated quantitative EEG may facilitate early detection
    [Show full text]
  • D3b1bdf3996e66f42682fee8
    winterfall 2012 2012 HOPKINS medicine Comfort Zones Living better in the shadow of serious illness Sometimes, the most intriguing career path is off the beaten one. You may have read in this magazine that Johns Hopkins Medicine is becoming ever more global. Over the last decade, we’ve been engaged in dynamic collaborations with government, health care and educational institutions overseas designed to de- velop innovative platforms for improving health care delivery around the world. To achieve this ambitious mission, we rely on physicians and other health care profes- To apply or to sionals who work onsite in leadership roles at these locations. This is an opportunity learn more, visit to push the boundaries of medicine in a broad-reaching, sustainable way—while hopkinsmedicine.org/ expanding your clinical exposure to complex cases and developing new research and careers and refer to the education projects in close collaboration with Johns Hopkins faculty and interna- requisition number tional colleagues. Questions? Current opportunities on the Johns Hopkins Medicine International [email protected] expatriate team: n Chief Executive Officer (Panama): 38143 n Chief Medical Officer (United Arab Emirates): 38147 n Medicine Practice Leader/CMO (Kuwait): 38541 n Paramedical Practice Leader (Kuwait): 38802 n Physician (Kuwait): 38652 n Project Manager/COO (Kuwait): 38501 n Public Health Professional—MD or MD/PhD (Kuwait): 38591 n Radiology Practice Leader (Kuwait): 38775 n Senior Project Manager/CEO (Kuwait): 38500 EOE/AA, M/F/D/V – The Johns Hopkins Hospital and Health System is an equal opportunity/affirmative action employer committed to recruiting, supporting, and fostering a diverse community of outstanding faculty, staff, and students.
    [Show full text]
  • Brain Stimulation and Neuroplasticity
    brain sciences Editorial Brain Stimulation and Neuroplasticity Ulrich Palm 1,2,* , Moussa A. Chalah 3,4 and Samar S. Ayache 3,4 1 Department of Psychiatry and Psychotherapy, Klinikum der Universität München, 80336 Munich, Germany 2 Medical Park Chiemseeblick, Rasthausstr. 25, 83233 Bernau-Felden, Germany 3 EA4391 Excitabilité Nerveuse & Thérapeutique, Université Paris Est Créteil, 94010 Créteil, France; [email protected] (M.A.C.); [email protected] (S.S.A.) 4 Service de Physiologie—Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France * Correspondence: [email protected] Electrical or magnetic stimulation methods for brain or nerve modulation have been widely known for centuries, beginning with the Atlantic torpedo fish for the treatment of headaches in ancient Greece, followed by Luigi Galvani’s experiments with frog legs in baroque Italy, and leading to the interventional use of brain stimulation methods across Europe in the 19th century. However, actual research focusing on the development of tran- scranial magnetic stimulation (TMS) is beginning in the 1980s and transcranial electrical brain stimulation methods, such as transcranial direct current stimulation (tDCS), tran- scranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), are investigated from around the year 2000. Today, electrical, or magnetic stimulation methods are used for either the diagnosis or exploration of neurophysiology and neuroplasticity functions, or as a therapeutic interven- tion in neurologic or psychiatric disorders (i.e., structural damage or functional impairment of central or peripheral nerve function). This Special Issue ‘Brain Stimulation and Neuroplasticity’ gathers ten research articles Citation: Palm, U.; Chalah, M.A.; and two review articles on various magnetic and electrical brain stimulation methods in Ayache, S.S.
    [Show full text]
  • Guidelines for EEG Reporting William O
    GUIDELINE American Clinical Neurophysiology Society Guideline 7: Guidelines for EEG Reporting William O. Tatum,* Selioutski Olga,† Juan G. Ochoa,‡ Heidi Munger Clary,§ Janna Cheek,║ Frank Drislane,¶ and Tammy N. Tsuchida# *Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, U.S.A.; †University of Rochester, Rochester, New York, U.S.A.; ‡University of South Alabama, Mobile, Alabama, U.S.A.; §Wake Forest University, Winston Salem, North Carolina, U.S.A.; ║Tulsa, Oklahoma, U.S.A.; ¶Harvard University, Boston, Massachusetts, U.S.A.; and #George Washington University, Washington, DC, U.S.A. Summary: This EEG Guideline incorporates the practice of parameters and type of EEG recording. Sleep feature structuring a report of results obtained during routine adult documentation is also expanded upon. More descriptive terms electroencephalography. It is intended to reflect one of the are included for background features and interictal discharges current practices in reporting an EEG and serves as a revision that are concordant with efforts to standardize terminology. In of the previous guideline entitled “Writing an EEG Report.” The the clinical correlation section, examples of common clinical goal of this guideline is not only to convey clinically relevant scenarios are now provided that encourages uniformity in information, but also to improve interrater reliability for reporting. Including digital samples of abnormal waveforms is clinical and research use by standardizing the format of EEG now readily available with current EEG recording systems and reports. With this in mind, there is expanded documentation of may be beneficial in augmenting reports when controversial the patient history to include more relevant clinical waveforms or important features are encountered.
    [Show full text]
  • EEG Glossary
    EEG Glossary The first attempt to systematically propose a syllabus for Activation procedure Any procedure designed to modu- electroencephalographers was made by O’Leary and Knott late EEG activity, for instance to enhance physiologi- who in 1955 published in the EEG Journal “Some Minimal cal waveforms or elicit abnormal paroxysmal activity. Essentials for Clinical Electroencephalographers” [1]. In the Examples include eye closing, hyperventilation, photic following decades, with the EEG being increasingly used in stimulation, natural or drug-induced sleep, sensory stimu- the experimental and clinical field, need to adopt a language lation (acoustic, somatosensory, or pain). as common as possible between various laboratories world- Activity, EEG An EEG wave or sequence of waves of wide became even more pressing. In fact, the multiplicity of cerebral origin. terms generated (and sometimes still generates) confusion Alpha band Frequency band of 8–13 Hz inclusive. Greek and misinterpretations, promoting misdiagnosis and making letter: α. it difficult to compare data between different laboratories. Alpha rhythm Rhythm at 8–13 Hz inclusive occurring To overcome this risk, in 1974 “A Glossary of Terms,” most during wakefulness over the posterior regions of the head, commonly used by “Clinical Electroencephalographers,” was generally with maximum amplitudes over the occipital published in the EEG Journal; this glossary was the result of areas. Amplitude varies but is mostly below 50 μV in the the work of a group of experts from the International Federation adult, but often much higher in children. Best seen with of Clinical Neurophysiology (IFCN) led by Chatrian [2]. the eyes closed, during physical relaxation and relative Thanks to this document, it was for the first time officially mental inactivity.
    [Show full text]
  • Mirror Neurons and Their Reflections
    Open Access Library Journal Mirror Neurons and Their Reflections Mehmet Tugrul Cabioglu1, Sevgin Ozlem Iseri2 1Department of Physiology, Faculty of Medicine, Baskent University, Ankara, Turkey 2Department of Clinical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey Received 23 October 2015; accepted 7 November 2015; published 12 November 2015 Copyright © 2015 by authors and OALib. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Human mirror neuron system is believed to provide the basic mechanism for social cognition. Mirror neurons were first discovered in 1990s in the premotor area (F5) of macaque monkeys. Besides the premotor area, mirror neuron systems, having different functions depending on their locations, are found in various cortical areas. In addition, the importance of cingulate cortex in mother-infant relationship is clearly emphasized in the literature. Functional magnetic resonance imaging, electroencephalography, transcortical magnetic stimulation are the modalities used to evaluate the, activity of mirror neurons; for instance, mu wave suppression in electroencephalo- graphy recordings is considered as an evidence of mirror neuron activity. Mirror neurons have very important functions such as language processing, comprehension, learning, social interaction and empathy. For example, autistic individuals have less mirror neuron activity; therefore, it is thought that they have less ability of empathy. Responses of mirror neurons to object-directed and non-object directed actions are different and non-object directed action is required for the activa- tion of mirror neurons. Previous researchers find significantly more suppression during the ob- servation of object-directed movements as compared to mimed actions.
    [Show full text]
  • A Tale of Two Brains – Cortical Localization and Neurophysiology in the 19Th and 20Th Century
    Commentary A Tale of Two Brains – Cortical localization and neurophysiology in the 19th and 20th century Philippe-Antoine Bilodeau, MDCM(c)1 MJM 2018 16(5) Abstract Introduction: Others have described the importance of experimental physiology in the development of the brain sciences and the individual discoveries by the founding fathers of modern neurology. This paper instead discusses the birth of neurological sciences in the 19th and 20th century and their epistemological origins. Discussion: In the span of two hundred years, two different conceptions of the brain emerged: the neuroanatomical brain, which arose from the development of functional, neurological and neurosurgical localization, and the neurophysiological brain, which relied on the neuron doctrine and enabled pre-modern electrophysiology. While the neuroanatomical brain stems from studying brain function, the neurophysiological brain emphasizes brain functioning and aims at understanding mechanisms underlying neurological processes. Conclusion: In the 19th and 20th century, the brain became an organ with an intelligible and coherent physiology. However, the various discoveries were tributaries of two different conceptions of the brain, which continue to influence sciences to this day. Relevance: With modern cognitive neuroscience, functional neuroanatomy, cellular and molecular neurophysiology and neural networks, there are different analytical units for each type of neurological science. Such a divide is a vestige of the 19th and 20th century development of the neuroanatomical and neurophysiological brains. history of medicine, history of neurology, cortical localization, neurophysiology, neuroanatomy, 19th century 1Faculty of Medicine, McGill University, Montréal, Canada. 3Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada. Corresponding Author: Kamiar Mireskandari, email [email protected].
    [Show full text]