Applying Visual Analytics to Physically-Based Rendering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Realistic Modeling and Rendering of Plant Ecosystems
Realistic modeling and rendering of plant ecosystems Oliver Deussen1 Pat Hanrahan2 Bernd Lintermann3 RadomÂõr MechÏ 4 Matt Pharr2 Przemyslaw Prusinkiewicz4 1 Otto-von-Guericke University of Magdeburg 2 Stanford University 3 The ZKM Center for Art and Media Karlsruhe 4 The University of Calgary Abstract grasslands, human-made environments, for instance parks and gar- dens, and intermediate environments, such as lands recolonized by Modeling and rendering of natural scenes with thousands of plants vegetation after forest ®res or logging. Models of these ecosystems poses a number of problems. The terrain must be modeled and plants have a wide range of existing and potential applications, including must be distributed throughout it in a realistic manner, re¯ecting the computer-assisted landscape and garden design, prediction and vi- interactions of plants with each other and with their environment. sualization of the effects of logging on the landscape, visualization Geometric models of individual plants, consistent with their po- of models of ecosystems for research and educational purposes, sitions within the ecosystem, must be synthesized to populate the and synthesis of scenes for computer animations, drive and ¯ight scene. The scene, which may consist of billions of primitives, must simulators, games, and computer art. be rendered ef®ciently while incorporating the subtleties of lighting Beautiful images of forests and meadows were created as early in a natural environment. as 1985 by Reeves and Blau [50] and featured in the computer We have developed a system built around a pipeline of tools that animation The Adventures of Andre and Wally B. [34]. Reeves and address these tasks. -
Enhancing Usability Evaluation of Web-Based Geographic Information
Enhancing Usability Evaluation of Web-Based Geographic Information Systems (WebGIS) with Visual Analytics René Unrau Institute for Geoinformatics, University of Münster, Germany Christian Kray Institute for Geoinformatics, University of Münster, Germany Abstract Many websites nowadays incorporate geospatial data that users interact with, for example, to filter search results or compare alternatives. These web-based geographic information systems (WebGIS) pose new challenges for usability evaluations as both the interaction with classic interface elements and with map-based visualizations have to be analyzed to understand user behavior. This paper proposes a new scalable approach that applies visual analytics to logged interaction data with WebGIS, which facilitates the interactive exploration and analysis of user behavior. In order to evaluate our approach, we implemented it as a toolkit that can be easily integrated into existing WebGIS. We then deployed the toolkit in a user study (N=60) with a realistic WebGIS and analyzed users’ interaction in a second study with usability experts (N=7). Our results indicate that the proposed approach is practically feasible, easy to integrate into existing systems, and facilitates insights into the usability of WebGIS. 2012 ACM Subject Classification Human-centered computing → User studies; Human-centered computing → Usability testing Keywords and phrases map interaction, usability evaluation, visual analytics Digital Object Identifier 10.4230/LIPIcs.GIScience.2021.I.15 Supplementary Material The source code is publicly available at https://github.com/ReneU/ session-viewer and includes configuration instructions for use in other scenarios. 1 Introduction Geospatial data has become a critical backbone of many web services available today, such as search engines, online booking sites, or open data portals [29]. -
Geotime As an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations for the Boston Police Department Offeror: Uncharted Software Inc
GeoTime as an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations for the Boston Police Department Offeror: Uncharted Software Inc. 2 Berkeley St, Suite 600 Toronto ON M5A 4J5 Canada Business Type: Canadian Small Business Jurisdiction: Federally incorporated in Canada Date of Incorporation: October 8, 2001 Federal Tax Identification Number: 98-0691013 ATTN: Jenny Prosser, Contract Manager, [email protected] Subject: Acquiring Technology and Services of Social Media Threats for the Boston Police Department Uncharted Software Inc. (formerly Oculus Info Inc.) respectfully submits the following response to the Technology and Services of Social Media Threats RFP. Uncharted accepts all conditions and requirements contained in the RFP. Uncharted designs, develops and deploys innovative visual analytics systems and products for analysis and decision-making in complex information environments. Please direct any questions about this response to our point of contact for this response, Adeel Khamisa at 416-203-3003 x250 or [email protected]. Sincerely, Adeel Khamisa Law Enforcement Industry Manager, GeoTime® Uncharted Software Inc. [email protected] 416-203-3003 x250 416-708-6677 Company Proprietary Notice: This proposal includes data that shall not be disclosed outside the Government and shall not be duplicated, used, or disclosed – in whole or in part – for any purpose other than to evaluate this proposal. If, however, a contract is awarded to this offeror as a result of – or in connection with – the submission of this data, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the resulting contract. GeoTime as an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations 1. -
Visualization in Multiobjective Optimization
Final version Visualization in Multiobjective Optimization Bogdan Filipič Tea Tušar Tutorial slides are available at CEC Tutorial, Donostia - San Sebastián, June 5, 2017 http://dis.ijs.si/tea/research.htm Computational Intelligence Group Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia 2 Contents Introduction A taxonomy of visualization methods Visualizing single approximation sets Introduction Visualizing repeated approximation sets Summary References 3 Introduction Introduction Multiobjective optimization problem Visualization in multiobjective optimization Minimize Useful for different purposes [14] f: X ! F • Analysis of solutions and solution sets f:(x ;:::; x ) 7! (f (x ;:::; x );:::; f (x ;:::; x )) 1 n 1 1 n m 1 n • Decision support in interactive optimization • Analysis of algorithm performance • X is an n-dimensional decision space ⊆ Rm ≥ • F is an m-dimensional objective space (m 2) Visualizing solution sets in the decision space • Problem-specific ! Conflicting objectives a set of optimal solutions • If X ⊆ Rm, any method for visualizing multidimensional • Pareto set in the decision space solutions can be used • Pareto front in the objective space • Not the focus of this tutorial 4 5 Introduction Introduction Visualization can be hard even in 2-D Stochastic optimization algorithms Visualizing solution sets in the objective space • Single run ! single approximation set • Interested in sets of mutually nondominated solutions called ! approximation sets • Multiple runs multiple approximation sets • Different -
Inviwo — a Visualization System with Usage Abstraction Levels
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction. -
Stories in Geotime
Stories in GeoTime Ryan Eccles, Thomas Kapler, Robert Harper, William Wright Information Visualization ( 2008 ) © Stefan John 2008 Summer term 2008 1 Introduction • Story a powerful abstraction − Used by intelligence analysts to conceptualize threats and understand patterns − Part of the analytical process • Oculus Info’s GeoTime™ − Geo-temporal event visualization tool − Augmented with story system − Narratives, hypertext-linked visualizations, visual annotations, and pattern detection − Environment for analytic exploration and communication − Detects geo-temporal patterns − Integrates story narration to increase analytic sense-making cohesion Summer term 2008 2 1 Introduction • Assisting the analyst in: − Identifying, − Extracting, − Arranging, and − Presenting stories within the data • Story system − Lets analysts operate at story level − Higher level abstractions of data (behaviors and events) − Staying connected to the evidence − Developed in collaboration with analysts • Formal evaluation showed high utility and usability Summer term 2008 3 Overview • Storytelling • Related Work • Geo-Temporal Visualization in GeoTime • Stories in GeoTime • Evaluation Summer term 2008 4 2 Storytelling • First described in Aristotle’s Poetics − Objects of a tragedy (story): - Plot -> arrangements of incidents -Character - Thought -> processes of reasoning leading characters to their respective behavior • Narrative theory suggests: − People are essentially storytellers − Implicit ability to evaluate a story for: - Consistency -Detail - Structure Summer -
A Very Simple Approach for 3-D to 2-D Mapping
Image Processing & Communications, vol. 11, no. 2, pp. 75-82 75 A VERY SIMPLE APPROACH FOR 3-D TO 2-D MAPPING SANDIPAN DEY (1), AJITH ABRAHAM (2),SUGATA SANYAL (3) (1) Anshin Soft ware Pvt. Ltd. INFINITY, Tower - II, 10th Floor, Plot No.- 43. Block - GP, Salt Lake Electronics Complex, Sector - V, Kolkata - 700091 email: [email protected] (2) IITA Professorship Program, School of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea email: [email protected] (3) School of Technology & Computer Science Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai - 400005, INDIA email: [email protected] Abstract. libraries with any kind of system is often a tough trial. This article presents a very simple method of Many times we need to plot 3-D functions e.g., in mapping from 3-D to 2-D, that is free from any com- many scientific experiments. To plot this 3-D func- plex pre-operation, also it will work with any graph- tions on 2-D screen it requires some kind of map- ics system where we have some primitive 2-D graph- ping. Though OpenGL, DirectX etc 3-D rendering ics function. Also we discuss the inverse transform libraries have made this job very simple, still these and how to do basic computer graphics transforma- libraries come with many complex pre-operations tions using our coordinate mapping system. that are simply not intended, also to integrate these 76 S. Dey, A. Abraham, S. Sanyal 1 Introduction 2 Proposed approach We have a pictorial representation (Fig.1) of our 3-D to 2-D mapping system: We have a function f : R2 → R, and our intention is to draw the function in 2-D plane. -
Dashboards for SAS® Visual Analytics Laura Oliver, Experis Solutions
SESUG Paper 256-2019 Dashboards for SAS® Visual Analytics Laura Oliver, Experis Solutions ABSTRACT Visual Analytics is a great tool to use to visualize and analyze data and create dashboard for others to review data. The designer layout has multiple sections with multiple parts to each section. This paper will provide an introduction to the designer tool available for Visual Analytics. INTRODUCTION This paper is a companion to the Hands on Workshop (HOW), Dashboards for SAS® Visual Analytics. This paper will give an overall view of the report designer environment for Visual Analytics. It will show where data and objects are added as well as give an introduction to how objects can be customized to enhance the user experience. It will also touch on how to filter data at the data source and object level. VISUAL ANALYTICS DESIGNER LAYOUT The Visual Analytics development environment consists of 3 main sections. The section on the left has tabs for Objects, Data and Imports. The middle section is the canvas where the report is built. The section on the right provides options to customize objects that have been added to the report from the Objects tab. Each object has its own set of properties, styles, etc. Figure 1 - VA Development Environment 1 DATA TAB The first step in creating a report is adding a data source. This is done on the Data tab using the Select a data source drop down. The Add Data Source dialog box will open, allowing a data source to be selected. All data sources must have been previously uploaded to the LASR server to be available for use in a report. -
The New Plot to Hijack GIS and Mapping
The New Plot to Hijack GIS and Mapping A bill recently introduced in the U.S. Senate could effectively exclude everyone but licensed architects, engineers, and surveyors from federal government contracts for GIS and mapping services of all kinds – not just those services traditionally provided by surveyors. The Geospatial Data Act (GDA) of 2017 (S.1253) would set up a system of exclusionary procurement that would prevent most companies and organizations in the dynamic and rapidly growing GIS and mapping sector from receiving federal contracts for a very-wide range of activities, including GPS field data collection, GIS, internet mapping, geospatial analysis, location based services, remote sensing, academic research involving maps, and digital or manual map making or cartography of almost any type. Not only would this bill limit competition, innovation and free-market approaches for a crucial high-growth information technology (IT) sector of the U.S. economy, it also would cripple the current vibrant GIS industry and damage U.S. geographic information science, research capacity, and competitiveness. The proposed bill would also shackle government agencies, all of which depend upon the productivity, talent, scientific and technical skills, and the creativity and innovation that characterize the vast majority of the existing GIS and mapping workforce. The GDA bill focuses on a 1972 federal procurement law called the Brooks Act that reasonably limits federal contracts for specific, traditional architectural and engineering services to licensed A&E firms. We have no problem with that. However, if S.1253 were enacted, the purpose of the Brooks Act would be radically altered and its scope dramatically expanded by also including all mapping and GIS services as “A&E services” which would henceforth would be required to be procured under the exclusionary Brooks Act (accessible only to A&E firms) to the great detriment of the huge existing GIS IT sector and all other related companies and organizations which have long been engaged in cutting-edge GIS and mapping. -
SAS Visual Analytics Tricks We Learned From
SESUG Paper RV-58-2017 SAS® Visual Analytics Tricks We Learned from Reading Hundreds of SAS® Community Posts Tricia Aanderud, Ryan Kumpfmiller; Zencos Consulting Rob Collum, SAS Institute ABSTRACT After you know the basics of SAS Visual Analytics, you realize there are some situations that require unique strategies. Sometimes tables are not structured right or become too large for the environment. Maybe creating the right custom calculation for a dashboard can be confusing. Geospatial data is hard to work with if you haven’t ever used it before. We looked through 100s of SAS Communities posts for the most common questions. These solutions (and a few extras) were extracted from the newly released Introduction to SAS Visual Analytics book. INTRODUCTION Our goal in writing the Introduction to SAS Visual Analytics book was to create a really practical and useful book for users. As part of the research for the book, we read hundreds of posts in the SAS Communities: SAS Visual Analytics section. This was a great exercise because we could confirm some of the sticking points that we know users have and pick up some tips to emphasize in the book as well. This paper combines our favorite tips from the book and some other ones that we think are worth sharing. Note: All examples were done using SAS Visual Analytics version 7.3 WHAT IS SAS COMMUNITIES? SAS Communities is an open forum on the SAS website, https://communities.sas.com, which connects SAS users all over the world. With over a hundred thousand members, users can post questions about challenges they are currently having working with SAS products or provide answers to other users who are looking for advice. -
A Visual Analytics Approach to Dynamic Social Networks
A Visual Analytics Approach to Dynamic Social Networks Paolo Federico1, Wolfgang Aigner1, Silvia Miksch1, Florian Windhager2, Lukas Zenk2 1Institute of Software Technology 2Department for Knowledge and Interactive Systems and Communication Management Vienna University of Technology, Austria Danube University Krems, Austria {federico, aigner, {florian.windhager, miksch}@cvast.tuwien.ac.at lukas.zenk}@donau-uni.ac.at ABSTRACT of employees in a large enterprise; the widespread connections The visualization and analysis of dynamic networks have become through social networking services; or the covert activities of increasingly important in several fields, for instance sociology or small, interconnected terrorist cells. economics. The dynamic and multi-relational nature of this data On the one hand, dynamic networks are capable of modeling poses the challenge of understanding both its topological structure such diverse problems, but on the other hand, they are complex in and how it changes over time. In this paper we propose a visual many respects and they are not easy to grasp for non-expert users. analytics approach for analyzing dynamic networks that For this reason we designed and developed a research prototype integrates: a dynamic layout with user-controlled trade-off aiming to facilitate the interactive exploration of dynamic between stability and consistency; three temporal views based on networks, the comprehension of their structure and in particular different combinations of node-link diagrams (layer how these structures change over time. We adopted a visual superimposition, layer juxtaposition, and two-and-a-half- analytics approach by combining interactive visualization dimensional view); the visualization of social network analysis techniques with automated analysis methods, taking into account metrics; and specific interaction techniques for tracking node some basic perceptual aspects. -
Basic Science: Understanding Numbers
Document name: How to use infogr.am Document date: 2015 Copyright information: Content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence OpenLearn Study Unit: BASIC SCIENCE: UNDERSTANDING NUMBERS OpenLearn url: http://www.open.edu/openlearn/science-maths-technology/basic-science-understanding-numbers/content-section-overview Basic Science: Understanding Numbers Simon Kelly www.open.edu/openlearn 1 Basic Science: Understanding Numbers A guide to using infogr.am Infographics are friendly looking images and graphs which convey important information. In the past an infographic was the result of a long and painful process between designers and statisticians involving numerous meetings, data management and testing of designs and colour schemes. Nowadays they are much simpler to create. In fact, the company infogr.am has created a website that simplifies this process so that anyone can do it. The guidance below outlines a few simple instructions on how to use infogr.am to create the types of graphs discussed in this course. We will be using the data from the ‘Rainfall data PDF’. You should download the PDF before you start. Remember, you do not need to plot all the graph types or all the data. Simply pick two countries and compare their rainfall. This is a basic guide to Infogr.am; the site can do much more than what we describe below, so have a play and see what you find out! 1. Go to https://infogr.am/. 2. Select ‘Sign up now’ and create a username, enter your email address and choose a password (if you prefer, you can use your Facebook, Twitter or Google+ account to connect and log in).