Networking Solutions for Voip Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Networking Solutions for Voip Table of Contents Networking Solutions for VoIP Table of Contents QOS: THE PRIME MOVER .............................................................................................................................................. 3 BENEFITS OF VOIP ........................................................................................................................................................... 3 VOIP NETWORK COMPONENTS AND PROTOCOLS ............................................................................................... 4 CODECS .............................................................................................................................................................................. 5 SIGNALING PROTOCOLS ............................................................................................................................... 5 THE LLDP-MED PROTOCOL ......................................................................................................................... 5 SECURITY ........................................................................................................................................................... 5 NETWORK PLanning – GENERAL CONSIDERATIONS ......................................................................................... 6 CHOOSING A SWItcH: BANDWIDTH & PORTS ....................................................................................................... 6 CHOOSING A SWItcH: POWER OVER ETHERNET .................................................................................................. 7 REFERENCE DESIGNS ...................................................................................................................................................... 8 20 PHONES ........................................................................................................................................................ 8 200 IP PHONES ................................................................................................................................................. 10 1000+ IP PHONES ........................................................................................................................................... 12 MANAGED INFRAstRUctURE ...................................................................................................................................... 16 Page 2 VoIP has become a mainstream technology. Today, the question for business telephony at any scale is no longer whether to switch to VoIP, but when. This paper focuses on the internal networking aspects of making a successful transition to VoIP, with emphasis on network design and switching technology. QoS: THE PRIME MOVER The most important factor that has moved VoIP into the mainstream is improved quality of service (QoS)1. Businesses that have held back because of VoIP’s early reputation for poor voice quality need no longer be concerned that important transactions (such as sales) will be impeded by poor QoS, or that their company will make a less than fully professional impression on callers with VoIP. Today, excellent quality of service can always be achieved with VoIP, but it’s not guaranteed. QoS ultimately depends on the switches that control the VoIP traffic, and of course, the network over which that traffic travels. It’s understandable that the focus of attention in a transition to VoIP is typically on the service provider, the delivery model (onsite vs. hosted) and the IP phones, but the switches have the most important impact on the user experience. With NETGEAR switches, VoIP traffic can be automatically prioritized to maintain the desired QoS, even when the network is saturated. The key factors required to ensure a successful VoIP network with reliable QoS are as follows: • Voice packet prioritization. The switch(es) that manage the traffic must be able to prioritize voice traffic when necessary to maintain QoS. • Adequate bandwidth. The network and the switch(es) that control it must be able to handle the additional load imposed by a VoIP deployment. • Resilience. The network switch(es) must have access to an alternate power supply should the main source of power fail. • Security. The network must be protected from hacking, including physical hacking. The first factor – packet prioritization – deserves more explanation. VoIP streams are not forgiving when it comes to dropped packets, signal delay and other factors that don’t affect data traffic. Therefore, to ensure a consistently high level of QoS, the switches must be able to prioritize network traffic, giving voice packets top priority. NETGEAR switches accomplish this automatically. BENEFITS OF VoIP This guide will help you understand the basics of VoIP so you can successfully plan and specify a VoIP network. It includes reference designs for VoIP networks with 20, 200 and 1,000 IP phones. Before covering design issues, however, it’s worth reviewing just why VoIP has become the solution of choice for organizations of all sizes. 1 The term “Quality of Service” and its abbreviation, QoS, has long been used in the literal sense of voice quality, i.e. how closely what the user hears matches the original. Recently, however, the term has begun to be used to describe the voice packet prioritization technology that is used to ensure high QoS even during periods of network congestion. In this document, QoS refers only to the original meaning of the term. Page 3 VoIP’s packet-switched solutions are winning the marketing battle over conventional circuit-switched telephony because they offer advantages that conventional POTS (“Plain Old Telephone Service”) just can’t match. These include: • Price. VoIP is substantially less expensive than circuit-switched telephony. In fact, online services like Skype enable individual users to international calls of unlimited duration for free. VoIP for business purposes isn’t free, but it is dramatically cheaper than today’s circuit-switched options. • Quality of service (QoS). In the past, the reduced cost of VoIP came with a penalty: reduced QoS. Today’s VoIP technology can provide voice quality that equals or even exceeds what conventional circuit-switched systems offer. • Complexity. Switching to VoIP typically reduces the complexity of dealing with “the phone company” and its arcane pricing structures, which even highly-paid consultants can’t always understand. • Features. VoIP can now match conventional telephony feature-for-feature, ranging from basics like voice mail to emerging capabilities like presence sensing. • Integration. More and more of today’s business applications, including CRM and call center applications, are grounded in internet-related technical standards. VoIP technology can be integrated with these applications much more easily than the analog technology of conventional telephony. • Ease of administration. Adding, removing or changing internal numbers is a simple process with VoIP’s web-based interfaces, and with auto discovery features, activating a new phone is virtually automatic. • Deployment advantages. VoIP can be piggy-backed on an existing network infrastructure, including the physical cabling. This means lower initial cost (with no new wiring) and lower maintenance cost as well. • No risk of obsolescence. VoIP is the wave of the future. Companies who adopt VoIP have no risk of ending up with a “dinosaur” phone system that can’t operate efficiently in an all-digital world. VoIP NETWORK COMPONENTS AND PROTOCOLS No matter what the size of a VoIP network, it will always include one or more of the following components: • User agents. These may be commercial IP phones, or “soft phones” residing in a desktop or laptop PC. • Voice gateway. The gateway acts as the bridge between a VoIP network and the PSTN network of the “outside world.” • IPBX. The IPBX (sometimes referred to as an IP PBX) replaces the conventional PBX of the past, and performs all its functions (voice mail, call forwarding, conference calling and many, many more). It connects to the PSTN network via the voice gateway. The IPBX is available in three deployment options: – a dedicated, on-site hardware device – software that runs on a standard on-site server – a managed service via the cloud • Switches to manage network traffic. The switches are crucial, because if they lack the appropriate capabilities or bandwidth capacity, QoS will suffer, leading to user complaints, poor customer service and problems with external telephone communication in general. • Cabling. For adequate performance, Cat5E or better cabling is recommended. Decisions involving these components can directly affect QoS, based on which protocols they support. For example, some IP phones use protocols that deliver higher voice quality, but also require more bandwidth. Before reviewing those protocols, it’s worth taking a moment to examine QoS in a little more detail. QoS is ultimately a subjective measurement, because different individuals will invariably disagree as to how well a system can reproduce a voice that’s known to them. However, one decades-old attempt objectify QoS does exist. Developed initially for evaluating circuit-switched equipment, it provides a measure of quality known as Mean Opinion Score (MOS) based on individuals sitting in quiet rooms and rating voice quality. MOS can range from 1.0 (unintelligible) to 5.0 (ideal). Normally a score above 4.0 is considered to be acceptable, but what’s most important is that QoS can be quantified, and components/protocols can be evaluated based
Recommended publications
  • ~DRAFT~ CHAPTER 5: Link Layer
    ~DRAFT~ CHAPTER 5: Link layer Contents Network notes – Link layer ..................................................................................................................... 1 1 Context of Chapter .................................................................................................................. 2 2 Introduction ............................................................................................................................. 2 3 Objectives of Chapter/module ................................................................................................ 3 4 Services of the link layer ......................................................................................................... 4 5 Error detection ........................................................................................................................ 4 a. Parity check ............................................................................................................................. 4 b. Cyclic Redundancy Check ...................................................................................................... 5 6 Error Correction ...................................................................................................................... 5 7 MAC ....................................................................................................................................... 6 a. Fixed assigned MAC ..............................................................................................................
    [Show full text]
  • Networking Packet Broadcast Storms
    Lesson Learned Networking Packet Broadcast Storms Primary Interest Groups Balancing Authorities (BAs) Generator Operators (GOPs) Reliability Coordinators (RCs) Transmission Operators (TOPs) Transmission Owners (TOs) that own and operate an Energy Management System (EMS) Problem Statement When a second network cable was connected from a voice over internet protocol (VOIP) phone to a network switch lacking proper settings, a packet broadcast storm prevented network communications from functioning, and supervisory control and data acquisition (SCADA) was lost for several hours. Broadcast storm events have also arisen from substation local area network (LAN) issues. Details A conference room was set up for a training class that needed to accommodate multiple PCs. The bridge protocol data unit (BPDU) packet propagation prevention setting was disabled on a port in the conference room in order to place a network switch off of that port. Upon completion of the training, the network switch was removed; however, the BPDU packet propagation setting was inadvertently not restored. As part of a telephone upgrade project, the traditional phone in this conference room was recently replaced by a VOIP phone. Later, an additional network cable was connected to the output port of this VOIP phone into a secondary network jack within the conference room. When the second network cable was connected from a VOIP phone to a network switch lacking proper settings, a switching loop resulted. Spanning tree protocol is normally used to prevent switching loops from propagating broadcast packets continuously until the network capacity is overwhelmed. A broadcast packet storm from the switching loop prevented network communications from functioning and SCADA was lost for several hours.
    [Show full text]
  • TR 102 633 V1.1.1 (2008-10) Technical Report
    ETSI TR 102 633 V1.1.1 (2008-10) Technical Report Corporate Networks (NGCN); Next Generation Corporate Networks (NGCN) - General 2 ETSI TR 102 633 V1.1.1 (2008-10) Reference DTR/ECMA-00352 Keywords IP, SIP ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2008.
    [Show full text]
  • Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations
    Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Report of Working Group P6 of the Power System Communications and Cybersecurity Committee of the Power and Energy Society of IEEE September 12, 2017 1 IEEE PES Power System Communications and Cybersecurity Committee (PSCCC) Working Group P6, Configuring Ethernet Communications Equipment for Substation Protection and Control Applications, has existed during the course of report development as Working Group H12 of the IEEE PES Power System Relaying Committee (PSRC). The WG designation changed as a result of a recent IEEE PES Technical Committee reorganization. The membership of H12 and P6 at time of approval voting is as follows: Eric A. Udren, Chair Benton Vandiver, Vice Chair Jay Anderson Galina Antonova Alex Apostolov Philip Beaumont Robert Beresh Christoph Brunner Fernando Calero Christopher Chelmecki Thomas Dahlin Bill Dickerson Michael Dood Herbert Falk Didier Giarratano Roman Graf Christopher Huntley Anthony Johnson Marc LaCroix Deepak Maragal Aaron Martin Roger E. Ray Veselin Skendzic Charles Sufana John T. Tengdin 2 IEEE PES PSCCC P6 Report, September 2017 Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Table of Contents 1. Introduction ...................................................................................... 10 2. Ethernet for protection and control .................................................. 10 3. Overview of Ethernet message
    [Show full text]
  • Wireless LAN (WLAN) Switching
    TECHNICAL WHITEPAPER Wireless LAN (WLAN) Switching An examination of a long range wireless switching technology to enable large and secure Wi-Fi Deployments TECHNICAL WHITEPAPER Wireless LAN (WLAN) Switching This whitepaper provides a detailed explanation of a new wireless switching technology that will allow for large and secure deployments of WLANS. The explosion of wireless networking on the scene in the past few years has been unprecedented. Many compare the market acceptance of this technology to the advent of the early days of Ethernet. When Ethernet was adopted as a standard, it was quickly embraced by the users of PCs, and the acceptance of wireless LANs has followed a similar path. Comparatively, the adoption of the wireless standard, IEEE 802.11, (also known as Wi-Fi) and use of mobile computing platforms is the basis of the wireless revolution. While this is a very good comparative analysis, in the real sense the adoption rate of wireless LANs has been much higher. The worker of today has morphed into a mobile worker that has grown accustomed to information on the fly, and will demand information inside and outside of the workplace. These factors have converged and are providing the impetus for the hyper acceptance of wireless technologies where by IT professionals are faced with the choice of embracing the technology or having it implemented by their users. Wireless Adoption at Warp Speed The next logical evolution of the technology was to make it ubiquitous to the mobile wireless worker. Intel is helping this technology “cross the chasm” into the mainstream by spending $300 million to market their introduction of the Centrino™ mobile technology, which provides built-in Wi-Fi for the mobile computing platform.
    [Show full text]
  • Wireless Network Bridge Lmbc-650
    DIGITAL LIGHTING MANAGEMENT WIRELESS DLM WATTSTOPPER® WIRELESS NETWORK BRIDGE LMBC-650 • Connects any DLM wired devices to a wireless IPv6 Mesh secure self-forming network • Built-in IPv6 Mesh and Bluetooth® low energy technology antenna provides robust signal strength and reliable communication • Two RJ-45 ports for DLM Cat 5e communication and class 2 power • Includes trusted hardware chips for device validation and secure out-of-box wireless AES 128-bit encryption • Tri-color LED indicator displays wireless network health, DLM Cat 5e communication, and ability to identify during commissioning • Plenum rated with mounting hardware for fast installation • In conjunction with an LMBR-650, supports third party integration with BAS through BACnet/IP over IPv6 Wireless Mesh network • Commissioning using LMCS-100 software ® IPv6 MESH Description Operation The LMBC-650 Wireless Network Bridge provides room The wireless network bridge operates using Class 2 power to room network connectivity for rooms with Wattstopper supplied by a DLM local network from one or more DLM room Digital Lighting Management (DLM) devices. The wireless controllers. It connects to the free-topology local network at DLM platform simplifies room to room communication and any convenient location using a standard LMRJ cable. It then installation, and eliminates potential start-up delays caused by securely communicates via encrypted wireless protocol over wiring issues. a mesh network to an LMBR-650 Border Router on the same The DLM local room network must include at least one wired floor of the building. controller. Once the LMBC-650 is connected to LMBR-650 The LMBC-650 monitors the DLM local network and network and then either using LMCS-100 or DLM Dashboard automatically exposes all room devices, settings and software, the system can expose BACnet protocol to revel the calibrations to the LMBR-650 Border Router.
    [Show full text]
  • Gigabit Ethernet Switch User's Guide
    Gigabit Ethernet Switch User’s Guide Version 1.0 P/N: ATNSGD8082503 Rev.1 This User's Guide contains important information regarding the installation of your switch. Please read it completely before beginning installation. For future reference, record the serial number of your network switch in the space below: SERIAL number The serial number is located on the bottom of the switch. Amer.com 7259 Bryan Dairy Road, Largo, FL 33777 USA © Amer.com Corp., 1997-2002 All rights reserved. No part of this publication may be reproduced in any form or by any means or used to make any derivative such as translation, transformation, or adaptation without permission from Amer.com, as stipulated by the United States Copyright Act of 1976. Amer.com reserves the right to make changes to this document and the products which it describes without notice. Amer.com shall not be liable for technical or editorial errors or omissions made herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material. Amer.com is a registered trademark of Amer.com. All other trademarks and trade names are properties of their owners. FCC Class A Certification Statement Model SGD8 FCC Class A This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1)This device may not cause harmful interference, and (2)This device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules.
    [Show full text]
  • Stealth Analysis of Network Topology Using Spanning Tree Protocol
    Stealth Analysis of Network Topology using Spanning Tree Protocol Stephen Glackin M.Sc. in Software and Network Security 2015 Computing Department, Letterkenny Institute of Technology, Port Road, Letterkenny, Co. Donegal, Ireland. Stealth Analysis of Network Topology using Spanning Tree Protocol Author: Stephen Glackin Supervised by: John O’ Raw A thesis presented for the award of Master of Science in Software and Network Security. Submitted to the Higher Quality and Qualifications Ireland (QQI) Dearbhú Cáilíochta agus Cáilíochtaí Éireann May 2015 Declaration I hereby certify that the material, which l now submit for assessment on the programmes of study leading to the award of Master of Science in Computing in Software and Network Security, is entirely my own work and has not been taken from the work of others except to the extent that such work has been cited and acknowledged within the text of my own work. No portion of the work contained in this thesis has been submitted in support of an application for another degree or qualification to this or any other institution. Signature of Candidate Date Acknowledgements I would like to thank my wife, kids, family members and extended family members for their support and encouragement, without them this project never would have been completed. Also I would like to offer my greatest appreciation to my supervisor Mr. John O'Raw for all his help and support. His knowledge with regards to everything relating to computing is truly amazing and I am very grateful for the time he has given in assisting me to carry out this project.
    [Show full text]
  • Ipnext 700™ NGN IP-PBX High-Performance Next Generation IP-PBX Solution
    IPNext 700™ NGN IP-PBX High-performance Next Generation IP-PBX Solution AddPac Technology 2006, Sales and Marketing www.addpac.com V2oIP Internetworking Solution AddPac VoIP Media Gateway SIP Proxy Server (Multiple E1/T1) WAN, Internet RAS AddPac PSTN VPMS (ATM, FR, IP Network) Note Book Phone AddPac LAN AddPac Embedded VoIP Dial-up Gateway GateKeeper AddPac ATM Router Phone FAX AddPac AddPac FAX FAX VoIP Gateway AddPac AddPac VoIP Router (1~2 Ports) VPN Gateway Metro Ethernet AddPac Phone AddPac Switch ATM Metro Phone Ethernet Switch AddPac WAN Router FAX FAX Multi-service FAX Router LAN Phone AddPac FAX Phone Phone VoIP Gateway LAN PBX (4~8 Ports) AddPac Phone FoIP Broadcasting AddPac VPN Gateway System AddPac AddPac LAN Phone Phone VBMS VPN Gateway AddPac AddPac Speaker VoIP Gateway Phone Note Book AddPac VoIP Gateway (4~8 Ports) (Digital E1/T1) Phone VoIP Gateway (1~2 Ports) Amp. Phone Phone AddPac AddPac AddPac AddPac FAX Voice Broadcasting AddPac Voice Broadcasting L2 Ethernet Switch L2 Ethernet Switch System L2 Ethernet Switch FAX Terminal FAX AddPac AddPac Phone IP PBX IP Phone PC PC AddPac Phone VoIP Gateway AddPac (4 Ports) LAN LAN Call Manager FAX Phone AddPac AddPac FAX Voice Broadcasting AddPac IP Phone FAX Speaker Terminal AddPac IP Video Codec NGN VoIP Gateway AddPac AddPac (8~16 Ports) Video Gateway Amp. NGN VoIP Gateway Phone (16~64 Ports) Speaker PC Speaker FAX Phone AddPac Amp. IP Phone Amp. Video AddPac Video Speaker Phone Input Video AddPac IP Phone Phone Display Video Phone Phone Input IP Phone Phone Display Amp.
    [Show full text]
  • L-240 Owner's Manual
    (patent pending) Outdoor Bluetooth/WiFi Amplifier Owner’s Manual Ambisonic Systems LLC 1990 N. McCulloch Blvd. Ste. D 222 Lake Havasu City, AZ 86403 Voice: 928.733.6002 Fax: 928.453.5550 [email protected] www.ambisonicsystems.com Outdoor Bluetooth/WiFi Amplifier Bluetooth Antenna Mounting Bracket L-240 Stereo r INPUT : 100 - 240V AC 50-60Hz 75W OUTPUT : 240W/4ohms 5004938 MODEL: L-240 WiFi Antenna (2) Ambisonic Systems,LLC CONFORMS TO UL STD 1838 CERTIFIED TO CSA STD C22.2 NO.250.7 Ambisonic BT I WiFi o L-Clip LED Indicators R-Clip Power Outputs 120VAC LEFT RIGHT - + + - Speaker Output Terminal Screws Weather Proof Enclosure 120 VAC Input Speaker Outputs Installation Instructions (interior wall, exterior wall, fence or other vertical surface that does not recieve total direct sunlight. THE “ WITH A MINIMUM OF THREE (3) FEET CLEARENCE AROUND THE UNIT FOR PROPER VENTILATION. Place a screw at the proper location to except the keyhole slot in the mounting bracket. switch is in the OFF position. 4) Push the bare wires under the terminal screws on the terminal blocks and tighten the screws securely. 5) Connect the speaker outputs from the “ ”, to the speakers. 6) Plug “ Close and lock the door to ensure your safety and to create a weather tight seal. Ambisonic Systems L-240 All-Weather Outdoor WiFi Amplifier / User & Setup Guide Index Page 2: Introduction Pages 3-7: Quick Start (No Network Connection) Page 7: Network Settings Pages 7-14: Connecting the Ambisonic L-240 to the Network 1 Ambisonic Systems L-240 All-Weather Outdoor WiFi Amplifier / User & Setup Guide Introduction AmbiSonic’s L-240 All-Weather Outdoor WiFi Amplifier stands apart from all others.
    [Show full text]
  • Positron Will Empower Your Business with Its Feature Rich, Easy to Use IP PBX Phone System
    The IP PBX System for Today & Tomorrow Positron will empower your business with its feature rich, easy to use IP PBX phone system Affordable, Compatible, Powerful, Reliable POSITRON Telecommunication Systems The product for the future of communications... available today! The G-Series IP PBX Positron is Committed to Making Your Business More Powerful Business Phone Systems with its Unied IP PBX Phone System Save time and money with a system that’s easy to setup and deploy Positron Telecom’s G-Series full function IP PBX business phone systems address the demands of fully Globalize your network integrated unified communication solutions. Supporting standards based open protocols allow enterprises to easily move away from legacy, proprietary systems and move to modern VoIP based so that you can be communications that provide long term benefits. reached wherever Bridge the gap between your legacy system and VoIP. The following tools were developed to you are save time and effort during the initial installation and ongoing support of the product: · Phones can be automatically configured · User data is imported with one click · Secure remote access capability · Intuitive Web configuration screens in multiple languages Get voice, data and video in one unique solution, with unsurpassed voice quality and robust echo cancellation, eliminating echo, noise and distortion. Positron’s IP PBX phone system grows with your business, without worries of outgrowing it. The G-Series product family caters to your company’s needs, and determines the right product based on the size of your business. The IP PBX phone system comes fully enabled with no setup fees and integrates traditional telephony networks and VoIP in a single, incredibly easy-to-use box.
    [Show full text]
  • Role of a Small Switch in a Network-Based Data Acquisition System
    Role of a Small Switch in a Network- Based Data Acquisition System Item Type text; Proceedings Authors Hildin, John Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © held by the author; distribution rights International Foundation for Telemetering Download date 28/09/2021 12:00:38 Link to Item http://hdl.handle.net/10150/605943 ROLE OF A SMALL SWITCH IN A NETWORK-BASED DATA ACQUISITION SYSTEM John Hildin Director of Network Systems Teletronics Technology Corporation Newtown, PA USA ABSTRACT Network switches are an integral part of most network-based data acquisition systems. Switches fall into the category of network infrastructure. They support the interconnection of nodes and the movement of data in the overall network. Unlike endpoints such as data acquisition units, recorders, and display modules, switches do not collect, store or process data. They are a necessary expense required to build the network. The goal of this paper is to show how a small integrated network switch can be used to maximize the value proposition of a given switch port in the network. This can be accomplished by maximizing the bandwidth utilization of individual network segments and minimizing the necessary wiring needed to connect all the network components. KEY WORDS Data Acquisition, Network Switch, Network Infrastructure INTRODUCTION An Ethernet-based network data acquisition system is made up of network nodes (e.g., data acquisition units, recorders, etc.) interconnected by switches. While critical to the operation of the overall network, switches are a necessary expense added to the total cost of the system. One metric sometimes used to characterize the impact of the switch component is the cost-per-port.
    [Show full text]