bioRxiv preprint doi: https://doi.org/10.1101/327098; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Overlooked roles of DNA damage and maternal age in generating human germline mutations Ziyue Gao1,*, Priya Moorjani2,3, Thomas Sasani4, Brent Pedersen4, Aaron Quinlan4,5, Lynn Jorde4, Guy Amster6,† and Molly Przeworski6,7, †,* 1 Howard Hughes Medical Institute & Department of Genetics, Stanford University. 2 Department of Molecular and Cell Biology, University of California, Berkeley. 3 Center for Computational Biology, University of California, Berkeley. 4 Department of Human Genetics, University of Utah School of Medicine. 5 Department of Biomedical Informatics, University of Utah School of Medicine. 6 Department of Biological Sciences, Columbia University. 7 Department of Systems Biology, Columbia University. † Contributed equally * Correspondence to:
[email protected] and
[email protected] Abstract Although the textbook view is that most germline mutations arise from replication errors, when analyzing large de novo mutation datasets in humans, we find multiple lines of evidence that call that understanding into question. Notably, despite the drastic increase in the ratio of male to female germ cell divisions after the onset of spermatogenesis, even young fathers contribute three times more mutations than young mothers, and this ratio barely increases with parental ages. This surprising finding points to a substantial contribution of damage-induced mutations. Indeed, C to G transversions and CpG transitions, which together constitute one third of all mutations, show genomic distributions and sex-specific age dependencies indicative of double- strand break repair and methylation-associated damage, respectively.