Two-Step Flow Synthesis of Biarylmethanes by Reductive Arylation of Tosylhydrazones

Total Page:16

File Type:pdf, Size:1020Kb

Two-Step Flow Synthesis of Biarylmethanes by Reductive Arylation of Tosylhydrazones Full Paper Two-Step Flow Synthesis of Biarylmethanes by Reductive Arylation of Tosylhydrazones Lukas Kupracz and Andreas Kirschning* Institute of Organic Chemistry and Center of Biomolecular Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167, Hannover, Germany The coupling of tosylhydrazones derived from aldehydes or ketones with aryl boronic acids to yield the corresponding arylation products that was first developed in the group of Barluenga was achieved in a two-step flow protocol. Starting from the respective carbonyl compounds, tosylhydrazones were formed in the first flow step. These were directly transferred into the second reactor to be coupled with boronic acids. Remarkably, carbenes are postulated to be the highly reactive intermediates of this reaction. Both steps required heating which was managed by electromagnetic induction of a fixed bed material based on steel beads. A continuously conducted two-step flow processes over a period of almost 2 days gave the arylation product in 84% yield. Keywords: flow reactor, inductive heating, hydrazones, boronic acids, Barluenga reaction 1. Introduction the electromagnetic power that induces heating of steel beads inside the flow reactor (PEEK: 12 cm length and 9 mm internal Recently, Barluenga and coworkers disclosed a metal-free diameter). The graphical presentation of the flow setup is depicted carbon–carbon bond forming process between tosylhydrazones in Table 1. An injection loop was incorporated between the pump 3 and boronic acids 4. Starting from ketones or aldehydes 1, this and the reactor for introducing a defined amount of a mixture of the very useful new reaction provides arylation products 5 that hydrazone, and the boronic acid was dissolved in dioxane into the otherwise can only be accessed from ketones and aldehydes main stream of dioxane. Behind the flow reactor, a back pressure through lengthy synthesis [1]. valve was located that guaranteed synthesis at temperatures above Commonly, when tosylhydrazones are heated under basic the boiling point of dioxane. The reactor was loaded with a fixed conditions, thermolysis provides diazo compounds. These bed material composed of steel beads (0.8 mm diameter) and the may result in carbene intermediates with subsequent elimination base K CO (4% mass fraction) and was incased by the inductor. or dimerization, the so called Bamford–Stevens reaction [2]. In 2 3 We found that the ideal conditions were mainly dictated by the the presence of an aryl boronic acid, the reductive arylation thermal stability of the tosylhydrazone 3a. When the reaction product 5 is formed, instead (Scheme 1) [3]. Barluenga propo- temperature was raised well above 120°C, we encountered sub- ses two possible routes for rationalizing the formation of the stantial decomposition and reduced yields for product 5.Atlower reductive arylation products 5. Under basic conditions, thermol- temperature and shorter residence time, transformation was incom- ysis of hydrazone 2 is expected to lead to the corresponding plete. In comparison to the batch experiment (entry 9) and Bar- diazo compound 6. From there, the associative route proceeds luenga's work, the yield was similar while the residence time was through boronate 7. Alternatively, a dissociative mechanism shorter compared to corresponding batch conditions in a flask. would first yield a carbene and hence the zwitterionic inter- Based on these optimized conditions, we were able to prepare mediate 8. In both cases, migration of the aryl group results in a small library of arylation products 5 (Tables 2 and 3). Both an alkyl boronic acid which is hydrolyzed by protodeboronation tosylhydrazones that originate from ketones as well as alde- to yield the arylation products 5. hydes underwent reductive arylation in the presence of potas- As part of our research program dedicated to develop mini- sium carbonate at 120°C commonly in good yield. As judged tuarized flow chemistry [4] as an enabling technology [5] for by thin-layer chromatography (TLC), conversions went to organic synthesis, we now report on a flow protocol that follows completion. Barluenga's sequence that allows to prepare alkylation products Obviously, the yields are highly dependent on the stability of 5 starting from ketones or aldehydes 1, respectively. Addition- the tosylhydrazones and the intermediate carbenes. Thus, elec- ally, we show that the required heat can ideally be generated tron deficient as well thiophenyl substituted boronic acids (4d, inside the reactor by inductive heating [6] of ferromagnetic 4f and 4i) yield several by-products as judged by TLC and fixed bed material. Inductive heating has emerged as an effi- liquid chromatography–mass spectrometry (LC–MS). Attemp- cient and safe new option for heating reaction vessels on the ted isolation provided several by-products 9–11 that were fully laboratory scale. We demonstrated that this enabling technique characterized (Figure 1). Homodimer 9 may result from the [7] is particularly powerful when combined with continuous intermediate carbene that originates from tosyl hydrazone 3l. flow processes [8]. It is well established, and particularly, the Alternatively, the carbene can directly insert into the NH bond group of Yoshida showed that flow chemistry is ideally suited to of the tosylhydrazone (e. g. 3i) to yield the N-alkylated hydra- “handle” chemistry with highly reactive intermediates such as zone 10. Both type of by-products can not further undergo carbanions, radicals or carbenes [9]. In the present situation, the reductive coupling. [10] A third type of by-products formed reductive arylation supposedly proceeds via reactive intermedi- under the reaction conditions was biaryl 11 that resulted from ates so that a continuous flow protocol should operate smoothly. homocoupling of the boronic acid. Its formation could not completely be suppressed because the boronic acid had to be 2. Results and Discussion employed in excess without necessarily reducing the yields of First, we transferred Barluenga's batch protocol onto flow arylation products 3. Yields for biaryl by-products were higher conditions by optimizing the flow rate and the heat generated by when longer reaction times were required. To combine hydrazone formation with the reductive aryla- * Author for correspondence: [email protected] tion, we next developed the best conditions for preparing the DOI: 10.1556/JFC-D-12-00021 J. Flow Chem. 2012, 3(1), 11–16 © 2012 Akadémiai Kiadó Two-Step Flow Synthesis of Biarylmethanes Scheme 1. Barluenga's reductive coupling of tosylhydrazones 3 with boronic acids 4 and proposed mechanism tosylhydrazone 3d under continuous flow conditions. We found Table 2. Inductively heated Barluenga reaction under flow conditions that this reaction proceeds rather rapidly at 80°C so that, even at (hydrazones from ketones): PEEK reactor (12 cm length and 9 mm internal flow rates of 0.2 mL/min and a residence time of 15 min, full diameter) filled with steel beads (diameter 0.8 mm, ~28 g) and K2CO3 (1 g), void volume 3.3 mL); solution of N-tosyl-hydrazones 3 (0.2 mmol) conversion took place. Again, heating was provided by induc- and boronic acid 4 (0.3 mmol) in dioxane (2 mL) tive heating of steel beads as fixed bed material. With these two protocols in hand, a flow system was set up that allowed the continuous preparation of 1,1′diaryl alkanes 5 starting from ketones or aldehydes 1 and tosylhydrazide 2 followed by addition of the boronic acid 4 in between both inductively heated flow reactors (Table 5). Again, a back pres- sure regulator allowed to run the reductive arylation at higher temperature and pressure. The flow rates for both processes were set at a flow rate of 0.05 mL/min although the first step in principal proceeds more rapidly. As exemplified below, the a sequence can both be performed starting from ketones (entry 1, Entry Tosylhydrazone Boronic acid Product Yield Table 5) as well as from aldehydes (entries 2 and 3, Table 5) in very good overall isolated yields. We also performed one reac- tion over 21 h in a continuous manner without the use of the 1 84% injection loop (entry 1). This experiment provided the arylation product 5a in slightly reduced isolated yield (84% vs. 87%). 2 78% Table 1. Optimization of the inductively heated Barluenga reaction under flow conditions: PEEK reactor (12 cm length and 9 mm internal diameter; 2 mm wall thickness) filled with steel beads (diameter 0.8 mm, ~28 g) and granular K2CO3 (1 g), void volume 3.3 mL); solution of N-tosyl-hydrazones 3 (0.2 mmol) and boronic acid 4 (0.3 mmol) in dioxane (2 mL) 3 80% 4 85% 5 49% Entry Flow rate (mL/min) Residence time (min) T (°C)a Yieldb 1 0.5 6.6 100 28%c 2 0.2 16.5 100 59%c 3 0.1 33 100 74%c 4 0.05 66 100 85% 6 83% 5 0.1 33 80 5%c 6 0.1 33 120 91% 7 0.1 33 140 85% 8 0.1 33 160 77%d e – 9 120 110 93% 7 59% a Temperature measured at the outlet of the reactor as well as at the outer surface of the PEEK reactor using an IR pyrometer. b Isolated yields of pure product after evaporation of the solvent and chromatographic purification. c Transformations incomplete as judged by LC–MS. 8 21% d Decomposition of N-tosyl-hydrazones as judged by LC–MS. e Batch conditions in an oil bath: solution of N-tosyl-hydrazones 3 a (0.2 mmol), boronic acid 4 (0.3 mmol) and K2CO3 (0.3 mmol) in dioxane Isolated yields of pure products after evaporation of the solvent and (2 mL); temperature of oil bath. chromatographic purification. 12 L. Kupracz and A. Kirschning Table 3. Inductively heated Barluenga reaction under flow conditions (hydrazones from aldehydes): PEEK reactor (12 cm length and 9 mm internal diameter) filled with steel beads (diameter 0.8 mm, ~28 g) and K2CO3 (1 g), void volume 3.3 mL); solution of N-tosyl-hydrazones 3 (0.2 mmol) and boronic acid 4 (0.3 mmol) in dioxane (2 mL).
Recommended publications
  • Further Studies on the Allylic Diazene Rearrangement Maha Laxmi Shrestha University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2013 Further Studies on the Allylic Diazene Rearrangement Maha Laxmi Shrestha University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Organic Chemistry Commons Recommended Citation Shrestha, Maha Laxmi, "Further Studies on the Allylic Diazene Rearrangement" (2013). Theses and Dissertations. 706. http://scholarworks.uark.edu/etd/706 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. FURTHER STUDIES ON THE ALLYLIC DIAZENE REARRANGEMENT FURTHER STUDIES ON THE ALLYLIC DIAZENE REARRANGEMENT A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Chemistry By Maha Laxmi Shrestha Pittsburg State University Master of Science in Chemistry, 2007 May 2013 University of Arkansas ABSTRACT Former graduate student Wei Qi and Professor Matt McIntosh have reported diastereoselective reductive 1,3-transpositions of acyclic α,β-unsaturated tosyl hydrazones to afford substrates with a 1,4-syn or 1,4-anti relationship between alkoxy and methyl groups that proceed via an ADR (Qi, W.; McIntosh, M. C. Org. Lett. 2008, 10, 357; Qi, W.; McIntosh, M. C. Tetrahedron 2008, 64, 7021). In these reports, silica gel was employed to accelerate the reduction. We have found that acetic acid gives the same results with high diastereoselectivity in the reaction. We further optimized the reaction by lowering the amount of catecholborane to 3 eq.
    [Show full text]
  • Carbonyl Reduction
    Carbonyl reduction In organic chemistry, carbonyl reduction is the organic reduction of any carbonyl group by a reducing agent. Typical carbonyl compounds are ketones, aldehydes, carboxylic acids, esters, and acid halides. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent; aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol can be further reduced and removed altogether. Metal hydrides based on boron and aluminum are common reducing agents; catalytic hydrogenation is also an important method of reducing carbonyls. Before the discovery of soluble hydride reagents, esters were reduced by the Bouveault–Blanc reduction,[1][2][3] employing a mixture of sodium [4][5] metal in the presence of alcohols. Oxidation ladders such as this one are used to illustrate sequences of carbonyls which can be interconverted through oxidations or reductions. Contents Carboxylic acid derivatives, aldehydes, and ketones to alcohols Hydride reduction Mechanism Trends in carbonyl reactivity Trends in metal hydride reactivity Carboxylic acid derivatives to aldehydes Using metal hydrides Alternative methods Aldehydes and ketones to alkanes α,β-unsaturated carbonyls Stereoselectivity Diastereoselective reduction Enantioselective reduction See also References Carboxylic acid derivatives, aldehydes, and ketones to alcohols Hydride reduction Mechanism The reaction mechanism for metal hydride reduction
    [Show full text]
  • Studies of Base-Catalyzed Decompositions of Tosylhydrazones
    This dissertation has been microfilmed exactly as received 68-8844 KAUFMAN, Gary Martin, 1937- STUDIES OF BASE-CATALYZED DECOMPOSITIONS OF TOSYLHYDRAZONES. The Ohio State University, Ph.D., 1967 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan STUDIES OF BASE-CATALYZED DECOMPOSITIONS OF TOSYLHYDRAZONES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gary Martin Kaufman, B.A. The Ohio S tate U n iv ersity 1967 Approved by Department of Chemistry Dedicated to my family, especially my wife, Sonya Louise i i ACKNOWLEDGMENT I wish to express my appreciation to Dr. Harold Shechter for his suggestion of this research problem, for his guidance and encouragement in the course of this work, and for his tire ­ less help in preparing this manuscript. I am grateful to the National Science Foundation and the Department of Chemistry of The Ohio State University for financial assistance. i i i VITA October 23, 1937 ......................Born - Heart/well, Nebraska 1955 ................................................ Graduated from Hastings High School Hastings, Nebraska I960 ............ B.A. in Chemistry, Hastings College, Hastings, Nebraska 1960-1961 . Teaching assistant, Department of Chemistry, The Ohio State University, Columbus, Ohio 1962-1964. ....................................... Assistant instructor, Department of Chemistry, The Ohio State University, Columbus, Ohio 1964.-1967 .......................................Research
    [Show full text]
  • Shapiro Reaction
    Robinson annulation The Robinson annulation is an organic reaction used to convert a ketone and an α,β-unsaturated ketone to a cyclohexenone using base. The mechanism begins with deprotonation with the base of the α-hydrogen of the ketone to form an enolate. The enolate then does a 1,4 addition to the conjugated olefin (Michael addition), which then abstracts a proton from water to form a diketone. Deprotonation of the other α-hydrogen with base forms another enolate which then does in intramolecular attack on the ketone group to give a cyclic alkoxy intermediate. Protonation of the alkoxy and a final elimination step result in the cyclo-hexenone produc. Mechanism The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (often called a Wittig reagent) to give an alkene and triphenylphosphine oxide. Reaction type:Nucleophilic Addition then Elimination Alkene formation from carbonyl compounds and phosphonium ylides, proceeding primarily through the proposed betaine and/or oxaphosphetane intermediates. The stereoselectivity can be controlled by the choice of ylide, carbonyl compound, and reaction conditions. When the ylide is replaced with a phosphine oxide carbanion, the reaction is referred to as the Horner reaction. When the ylide is replaced with a phosphonate carbanion, the reaction is referred to as the Horner-Emmons- Wadsworth reaction. The “Wittig Reaction” is one of the premier methods for the synthesis of alkenes. It uses a carbonyl compound as an electrophile, which is attacked by a “phosphorus ylide”. The Wittig reaction is nicely complementary to the aldol condensation, in which carbonyl compounds are attacked not by a phosphorus ylide but by an enolate.
    [Show full text]
  • STEROID DIALKYLCARBENE REACTIONS Abstract Approved: Dr
    AN ABSTRACT OF THE THESIS OF DALE DAVID DIXON for the DOCTOR OF PHILOSOPHY (Name) (Degree) in "CHEMISTRY (ORGANIC)" presented on\--Wicl j 1(1Wi (Major) (Date) T itle: STEROID DIALKYLCARBENE REACTIONS Abstract approved: Dr. F. T. Bond Steroid carbenes have been investigated as synthetic inter- mediates. Basic decomposition of 4-en-3-one tosylhydrazones (and other A-ring systems) gives varying amounts of 2, 4-dienes, and solvent derived products with diglyme, heptane, tetrachloroethylene, carbon tetrachloride, benzene and cyclohexene. A method for separating complex product mixtures was developed and a study of the effect of reaction conditions carried out. Butyl lithium decom- position gives a high yield of the homoannular diene. Sterically hindered carbenes give only intramolecular products. Saturated steroid carbenes have been shown to give widely varying y Ií insertion ratios. Decomposition of cholestan -3 -one tosylhydrazone in tetrachloroethylene results in the formation of a solvent derieved pyrazoline. The possible role of pyrazolines in other carbene reactions is discussed, A facile route to interesting fused ring pyrazoles has been developed in the l6-en-20-one tosylhydrazone system. With a 16- methyl system the pyrazolenine was isolated and investigated. The 'possible biological properties of these compounds are discussed. Steroid Dialkylcarbene Reactions by Dale David Dixon A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 1968 APPROVED: Assistant Professor of Chemistry in charge of major Chairman of the Department of Chemistry Dean of Graduate School Date thesis is presented / / 1 6 S Typed by Gwendolyn Hansen for Dale David Dixon ACKNOWLEDGEMENTS I wish to express my appreciation to Dr.
    [Show full text]
  • UC Irvine UC Irvine Electronic Theses and Dissertations
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Three-Component Carbenylative Coupling Reaction Involving Palladium Alkylidene Intermediates Permalink https://escholarship.org/uc/item/6n65b6fm Author Nguyen, Thi Anh Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA IRVINE Three-Component Carbenylative Coupling Reaction Involving Palladium Alkylidene Intermediates THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Organic Chemistry by Thi Anh Nguyen Thesis Committee: Professor David L. Van Vranken, Chair Professor Elizabeth R. Jarvo Professor Suzanne A. Blum 2015 DEDICATION To my parents, family, teachers, and friends who have great influence on me as a person, a student, and a friend ii TABLE OF CONTENTS Page LIST OF SCHEMES...................................................................................................................... vi LIST OF TABLES ......................................................................................................................... ix ACKNOWLEDGMENTS ...............................................................................................................x ABSTRACT OF THE THESIS ..................................................................................................... xi CHAPTER 1: Carbenylative Coupling Involving Palladium Alkylidene Intermediates 1.1. Alkylidene precursors for palladium-catalyzed
    [Show full text]
  • Synthesis and Trypanocidal Activity of Salicylhydrazones and P-Tosylhydrazones of S-(+)-Carvone and Arylketones on African Trypanosomiasis
    Journal of Applied Pharmaceutical Science Vol. 5 (06), pp. 001-007, June, 2015 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2015.50601 ISSN 2231-3354 Synthesis and trypanocidal activity of salicylhydrazones and p-tosylhydrazones of S-(+)-carvone and arylketones on African trypanosomiasis Bienvenu GLINMA 1.2.4, Fernand A. GBAGUIDI 1.2.3*, Urbain C. KASSEHIN 3, Salomé D.S. KPOVIESSI1, Alban HOUNGBEME 2, Horrhus D. HOUNGUE3, Georges C. ACCROMBESSI 1 and Jacques H. POUPAERT3 1Laboratoire de Chimie Organique Physique et de Synthèse, Département de Chimie, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République Bénin. 2Laboratoire de Pharmacognosie/Institut de Recherche et d’Expérimentation en Médecine et Pharmacopée Traditionnelles (IREMPT) / Centre Béninois de la Recherche Scientifique et Technique (CBRST)/ UAC, 01 BP 06 Oganla Porto-Novo. 3Laboratoire de Chimie Pharmaceutique Organique, Ecole de Pharmacie, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Campus du Champ de Foire, 01 BP 188, Cotonou, Bénin. 4Louvain Drug Research Institute (LDRI), School of Pharmacy, Université Catholique de Louvain, B1 7203 Avenue Emmanuel Mounier 72, B-1200 Brussels, Belgique. ABSTRACT ARTICLE INFO Article history: Hydrazones are nowadays considered to be good candidates for various pharmaceutical applications. Here, we Received on: 06/03/2015 have synthesized two series of hydrazones: salicylhydrazones (GS1-4) and p-tosylhydrazones (GT1-4) from S- Revised on: 09/04/2015 (+)-carvone and three aryketones with good yields (57-91%). Molecules were characterized by elemental Accepted on: 22/04/2015 analyses; TLC, NMR 1H, NMR 13C and MS. Submitted, in vitro, to their antiparasitic testing on Trypanosoma Available online: 27/06/2015 brucei brucei, and toxicity on Artemia salina Leach, all compounds except GT2 showed significant antitrypanosomal activity IC50 ranging from 1 to 34 micromolar (µM).
    [Show full text]
  • Formation of Alkyl-And Dialkylcarbenes. the 3
    AN ABSTRACT OF THE THESIS OF DALE MC CLISH CROUSE for the M.S. in CHEMISTRY (Nañae) (Degree) (Major) Date thesis is presented September 2, 1966 Title FORMATION OF ALKYL- AND DIALKYLCARBENES. THE 3- CYCLOHEXENYL CARBINYL CARBENE SYSTEM. Redacted for Privacy Abstract approved (Major professor) The 3- cyclohexenyl carbinyl carbene species was formed by the thermal decomposition of the p- toluene sulfonylhydrazone sodium salt and by oxidation of the hydrazone. Several oxidizing agents were studied. The products were investigated under aprotic and protic conditions and at various temperatures. The diazocompound was formed as an intermediate and found to be relatively stable although extremely sensitive to the conditions. When the diazo- compound was decomposed, the azine and the hydrocarbon products, both major and minor, were characterized. Under aprotic condi- tions the hydrocarbon yield was small and showed a large amount of (3- insertion. The ß- to y- insertion ratio decreased as the system became protic. A comparison of the two methods of carbene forma- tion is presented. FORMATION OF ALKYL- AND DIALKYLCARBENES. THE 3- CYCLOHEXENYL CARBINYL CARBENE SYSTEM by DALE MC CLISH CROUSE A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1967 APPROVED: Redacted for Privacy Assistant Professor of Chemistry In Charge of Major Redacted for Privacy Chairman of department of Chemistry Redacted for Privacy Dean of Graduate School Date thesis is presented September 2, 1966 Typed by Gwendolyn Hansen ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. F. Thomas Bond for his wealth of ideas concerning the research and his help in writing this thesis.
    [Show full text]
  • Cyclocopacamphene by Robert Dean
    STEREOSELECTIVE TOTAL SYNTHESIS OF SESQUITERPENOIDS: (-)-COPACAMPHENE AND (-)-CYCLOCOPACAMPHENE BY ROBERT DEAN SMILLIE B.Sc. (Hons.)» University of British Columbia, 1966 M.Sc. University of British Columbia, 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMISTRY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January, 1972 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of C M ^ mSty. The University of British Columbia Vancouver 8, Canada ABSTRACT An efficient, 6-step synthesis of the (-)-diketone (122) from (-f)-carvomenthone (123) is described. Conversion of 123 Into the corresponding n-butylthiomethylene derivative (131), followed by alkylation of the latter with ethyl 2-iodopropionate and successive removal of the n-butythiomethylene blocking group and esterification of the resulting acid (134) , gave the keto ester (135). Treatment of 135 with sodium bis(trimethylsilyl)amide in dimethoxyethane resulted in an efficient intramolecular Claisen condensation, affording the (-)-diketone 122 in 90% yield. The stereochemistry of the (-)-diketone (122) was proven unambiguously in the following way. Successive subjection of the (+)- ketol (142), of known absolute stereochemistry, to hydrogenation, dehydration, condensation with ethyl formate, and oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone, afforded the (+)-dienone aldehyde (153).
    [Show full text]
  • New Reactions with Allyl- and Allenylboron Reagents
    !" # $ %&'( '&)&& * +, -" +" #".'/) #" 0 # ) # # + " " " ) # 123123 " " 4 ) # 05 " + # # )6 0 # + " # 0 # ) " " # 4 ) 0 4 " + # ) + # # 4 #0 " ) 0 0 # #) # ) # # # 7# 0 " ) 8 + 9# 0 ) 0 0 # " ) : # 9# # + # ## # + # # 9# 9# ) %&'( ;<<#) ) < " =#>#;; ;#;"'?$@/A 8BA$(A'$$A$2@&A 8BA$(A'$$A$2@'/ !" +'&/A' NEW REACTIONS WITH ALLYL- AND ALLENYLBORON REAGENTS Dong Wang New Reactions with Allyl- and Allenylboron Reagents Transition-Metal-Catalyzed and Transition-Metal-Free Carbon-Carbon Bond Formation Processes Dong Wang ©Dong Wang, Stockholm University 2018 ISBN print 978-91-7797-340-9 ISBN PDF 978-91-7797-341-6 Cover picture: "Hiking on Kungsleden" by Dong Wang Printed in Sweden by Universitetsservice US-AB, Stockholm 2018 Distributor: Department of Organic Chemistry, Stockholm University To my parents Abstract Organoboron compounds have been widely used in carbon-carbon bond formation reactions in organic synthesis and catalysis. This thesis is focused on cross-coupling reactions of allyl-, allenylboronic acids and their ester derivatives via transition metal catalysis or transition-metal-free pro- cesses.
    [Show full text]
  • Cyclopropanation Reactions of Semi-Stabilized and Non-Stabilized Diazo Compounds
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2019, 51, 3947–3963 short review 3947 en Syn thesis E. M. D. Allouche, A. B. Charette Short Review Cyclopropanation Reactions of Semi-stabilized and Non-stabilized Diazo Compounds Emmanuelle M. D. Allouche R4 R5 André B. Charette* 0000-0001-5622-5063 N2 R3 R6 FRQNT Centre in Green Chemistry and Catalysis, Faculty of Arts unharmful highly toxic high diversity and Sciences, Department of Chemistry, Université de Montréal, quite stable in situ processes highly unstable in situ applications ... P.O. Box 6128, Station Downtown, Montréal, Quebec, H3C 3J7, ... 3 4 Canada R R R N2 [email protected] NH continuous flow in line R2 R6 N processes applications R1 R2 R1 R5 ... R1 R2 no manipulation new valuable safe handling needed! compounds Received: 26.06.2019 of new drugs or drug targets.2 In addition, this three- Accepted after revision: 06.08.2019 membered ring can be employed as a versatile synthetic Published online: 23.09.2019 DOI: 10.1055/s-0037-1611915; Art ID: ss-2019-m0359-sr motif for the synthesis of other cycloalkanes and acyclic compounds by ring-extension or ring-opening reactions.3 Abstract The cyclopropane ring is present in a large number of bio- Three main strategies have been developed for the cyclo- active molecules as its incorporation often greatly alters their phys- propanation of olefins: the halomethyl metal-mediated cy- iochemical properties. The synthesis of such motif is therefore of inter- est. Diazo compounds are versatile and powerful reagents that can be clopropanation via carbenoid species; the transition-metal- used in a broad range of reactions, including cyclopropanation process- catalyzed or metal-free decomposition of diazo com- es.
    [Show full text]
  • Reductions by the Alumino- and Borohydrides in Organic Synthesis
    Reductions by the Alumino- and Borohydrides in Organic Synthesis Second Edition Jacqueline Seyden-Penne WILEY-VCH NEW YORK / CHICHESTER / WEINHEIM / BRISBANE / SINGAPORE / TORONTO Jacqueline Seyden-Penne Le Vallat de Vermenoux 84220 Goult France English Language Editor Dennis P. Curran Department of Chemistry University of Pittsburgh Parkman Avenue & University Drive Pittsburgh, PA 15260 This book is printed on acid-free paper. @ Copyright © 1997 by Wiley-VCH, Inc. All rights reserved. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per- copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. Library of Congress Cataloging in Publication Data: Seyden-Penne, J. [Reductions par les aiumino- et borohydrures en syntheses organique. English] Reductions by the aiumino- and borohydrides in organic synthesis / Jacqueline Seyden-Penne. — 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-471-19036-5 (cloth : alk. paper) 1. Reduction (Chemistry) 2. Hydrides. 3. Organic compounds—Synthesis. I. Title. QD63.R4S4913 1997 547'.23—dc21 96-49776 Printed in the United States of America 10 987654 3 21 Contents Preface ix Foreword xi Abbreviations xiii 1.
    [Show full text]