A Systematic Analysis of the Radial Resonance Frequency Spectra of the PZT-Based (Zr/Ti = 52/48) Piezoceramic Thin Disks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Anti-Resonance Frequencies from Operational Modal Analysis in finite Element Model Updating
ARTICLE IN PRESS Mechanical Systems and Signal Processing Mechanical Systems and Signal Processing 21 (2007) 74–97 www.elsevier.com/locate/jnlabr/ymssp The role of anti-resonance frequencies from operational modal analysis in finite element model updating D. Hansona,Ã, T.P. Watersb, D.J. Thompsonb, R.B. Randalla, R.A.J. Forda aUniversity of New South Wales, Sydney, Australia bInstitute of Sound and Vibration Research, Universtiy of Southampton, UK Received 13 September 2005; received in revised form 29 December 2005; accepted 4 January 2006 Available online 15 March 2006 Abstract Finite element model updating traditionally makes use of both resonance and modeshape information. The mode shape information can also be obtained from anti-resonance frequencies, as has been suggested by a number of researchers in recent years. Anti-resonance frequencies have the advantage over mode shapes that they can be much more accurately identified from measured frequency response functions. Moreover, anti-resonance frequencies can, in principle, be estimated from output-only measurements on operating machinery. The motivation behind this paper is to explore whether the availability of anti-resonances from such output-only techniques would add genuinely new information to the model updating process, which is not already available from using only resonance frequencies. This investigation employs two-degree-of-freedom models of a rigid beam supported on two springs. It includes an assessment of the contribution made to the overall anti-resonance sensitivity by the mode shape components, and also considers model updating through Monte Carlo simulations, experimental verification of the simulation results, and application to a practical mechanical system, in this case a petrol generator set. -
MECHANICS Don, Don, 2020- N
Vestnik of Don State Technical University. 2020. Vol. 20, no. 2, pp. 118–124. ISSN 1992-5980 eISSN 1992-6006 MECHANICS UDC 539.3 https://doi.org/10.23947/1992-5980-2020-20-2-118-124 Transverse vibrations of a circular bimorph with piezoelectric and piezomagnetic layers A. N. Solov'ev, Do Thanh Binh, O. N. Lesnyak Don State Technical University (Rostov-on-Don, Russian Federation) Introduction. Transverse axisymmetric oscillations of a bimorph with two piezo-active layers, piezoelectric and piezomagnetic, are studied. This element can be applied in an energy storage device which is in an alternating magnetic field. The work objective is to study the dependence of resonance and antiresonance frequencies, and electromechanical coupling factor, on the geometric parameters of the element. Materials and Methods. A mathematical model of the piezoelement action is a boundary value problem of linear magneto-electro-elasticity. The element consists of three layers: two piezo-active layers (PZT-4 and CoFe2O4) and a centre dead layer made of steel. The finite element method implemented in the ANSYS package is used as a method for solving a boundary value problem. Results. A finite element model of a piezoelement in the ANSYS package is developed. Problems of determining the natural frequencies of resonance and antiresonance are solved. Graphic dependences of these frequencies and the electromechanical coupling factor on the device geometrics, the thickness and radius of the piezo-active layers, are constructed. Discussion and Conclusions. The results obtained can be used under designing the working element of the energy storage device due to the action of an alternating magnetic field. -
A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
Review A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers Vivek T. Rathod Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-249-5207 Received: 29 December 2018; Accepted: 29 January 2019; Published: 1 February 2019 Abstract: Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics. -
Elementary Filter Circuits
Modular Electronics Learning (ModEL) project * SPICE ckt v1 1 0 dc 12 v2 2 1 dc 15 r1 2 3 4700 r2 3 0 7100 .dc v1 12 12 1 .print dc v(2,3) .print dc i(v2) .end V = I R Elementary Filter Circuits c 2018-2021 by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Last update = 13 September 2021 This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International Public License. A copy of this license is found in the last Appendix of this document. Alternatively, you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. ii Contents 1 Introduction 3 2 Case Tutorial 5 2.1 Example: RC filter design ................................. 6 3 Tutorial 9 3.1 Signal separation ...................................... 9 3.2 Reactive filtering ...................................... 10 3.3 Bode plots .......................................... 14 3.4 LC resonant filters ..................................... 15 3.5 Roll-off ........................................... 17 3.6 Mechanical-electrical filters ................................ 18 3.7 Summary .......................................... 20 4 Historical References 25 4.1 Wave screens ........................................ 26 5 Derivations and Technical References 29 5.1 Decibels ........................................... 30 6 Programming References 41 6.1 Programming in C++ ................................... 42 6.2 Programming in Python .................................. 46 6.3 Modeling low-pass filters using C++ ........................... 51 7 Questions 63 7.1 Conceptual reasoning ................................... -
The Self-Resonance and Self-Capacitance of Solenoid Coils: Applicable Theory, Models and Calculation Methods
1 The self-resonance and self-capacitance of solenoid coils: applicable theory, models and calculation methods. By David W Knight1 Version2 1.00, 4th May 2016. DOI: 10.13140/RG.2.1.1472.0887 Abstract The data on which Medhurst's semi-empirical self-capacitance formula is based are re-analysed in a way that takes the permittivity of the coil-former into account. The updated formula is compared with theories attributing self-capacitance to the capacitance between adjacent turns, and also with transmission-line theories. The inter-turn capacitance approach is found to have no predictive power. Transmission-line behaviour is corroborated by measurements using an induction loop and a receiving antenna, and by visualising the electric field using a gas discharge tube. In-circuit solenoid self-capacitance determinations show long-coil asymptotic behaviour corresponding to a wave propagating along the helical conductor with a phase-velocity governed by the local refractive index (i.e., v = c if the medium is air). This is consistent with measurements of transformer phase error vs. frequency, which indicate a constant time delay. These observations are at odds with the fact that a long solenoid in free space will exhibit helical propagation with a frequency-dependent phase velocity > c. The implication is that unmodified helical-waveguide theories are not appropriate for the prediction of self-capacitance, but they remain applicable in principle to open- circuit systems, such as Tesla coils, helical resonators and loaded vertical antennas, despite poor agreement with actual measurements. A semi-empirical method is given for predicting the first self- resonance frequencies of free coils by treating the coil as a helical transmission-line terminated by its own axial-field and fringe-field capacitances. -
Maintenance of Remote Communication Facility (Rcf)
ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO. -
THE UNIVERSITY, BRISTOL, BS8 Lhr, ENGLAND DEVELOPMENT of ANTIRESONANCE FORCE ISOLATORS for HELICOPTER VIBRATION REDUCTION
SIXTH EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM PAPER NO, 18 DEVELOPMENT OF ANTIRESONANCE FORCE ISOLATORS FOR HELICOPTER VIBRATION REDUCTION D. Braun Messerschmitt-Bolkow-Blohm GmbH Munich, Germany September 16-19, 1980 Bristol, England THE UNIVERSITY, BRISTOL, BS8 lHR, ENGLAND DEVELOPMENT OF ANTIRESONANCE FORCE ISOLATORS FOR HELICOPTER VIBRATION REDUCTION D. Braun Messerschmitt-B6lkow-Blohm GmbH Munich, Germany Abstract One method of reduction of the rotor induced cabin vibrations consists of seperating the helicopter fuselage dynamically from the rotor-transmission unit by use of convenient isolator elements. An example of such a device is one which is essentially formed by the parallel connection of a spring and a passive force generator, and which works according to the well known antiresonance principle. This paper deals with the development of two different types of uni axial antiresonance force isolators. They are suitably arranged at several points, in different operating directions, as connecting members between gearbox and fuselage, to obtain multiaxis vibration isolation. One of these isolators is a conventional model; the other one is a novel type distingui shed by very low inherent damping, total symmetrical arrangement of all com ponents, and simple wear-resistant design. Sufficiently exact theoretical descriptions are developed for both isolator types. The effectiveness of the presented force isolators is tested by use of an uniaxial functional model by which the free-free condition of the flying helicopter -
On Antiresonance in the Forced Response of Mistuned Bladed Disks
Shock and Vibration 10 (2003) 135–146 135 IOS Press On antiresonance in the forced response of mistuned bladed disks Keith Jones and Charles Cross Propulsion Directorate, Air Force Research Laboratory, 1950 Fifth Street, Wright Patterson AFB, OH 45433-7251, USA Received 14 January 2002 Revised 2 September 2002 Abstract. Mistuning in bladed disks usually increases the forced response of the maximum responding blade leading to shortened component life in turbine engines. This paper investigates mistuning using a transfer function approach where the frequency response functions (FRFs) are described by natural frequencies and antiresonant frequencies. Using this approach, antiresonant frequencies are shown to be a critical factor in determining the maximum blade response. Two insights are gained by formulating antiresonant frequencies as the eigenvalues of reduced system matrices: 1) Mistuning a particular blade has no effect on that blade’s antiresonant frequencies. 2) Engine orders N and N/2, where N is the number of blades on the disk, tend to produce the highest maximum local response. Numerical examples are given using a spring-mass-oscillator model of a bladed disk. Pole-zero loci of mistuned bladed disks show that increased maximum blade response is often due to the damping of antiresonant frequencies. An important conclusion is that antiresonant frequencies can be arranged such that a mistuned bladed disk has a lower maximum blade response than a tuned bladed disk. Nomenclature x Displacement degree of freedom A Mistuning amplification -
Superconducting Nano-Mechanical Diamond Resonators
Superconducting nano-mechanical diamond resonators Tobias Bautze,1,2, ∗ Soumen Mandal,1,2, † Oliver A. Williams,3, 4 Pierre Rodi`ere,1, 2 Tristan Meunier,1, 2 and Christopher B¨auerle1,2, ‡ 1Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, France 2CNRS, Inst. NEEL, F-38042 Grenoble, France 3Fraunhofer-Institut f¨ur Angewandte Festk¨orperphysik, Tullastraße 72, 79108 Freiburg, Germany 4University of Cardiff, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA, United Kingdom (Dated: October 9, 2018) In this work we present the fabrication and characterization of superconducting nano-mechanical resonators made from nanocrystalline boron doped diamond (BDD). The oscillators can be driven and read out in their superconducting state and show quality factors as high as 40,000 at a resonance frequency of around 10 MHz. Mechanical damping is studied for magnetic fields up to 3 T where the resonators still show superconducting properties. Due to their simple fabrication procedure, the devices can easily be coupled to other superconducting circuits and their performance is comparable with state-of-the-art technology. I. INTRODUCTION II. FABRICATION The nano-mechanical resonators have been fabricated Nano-mechanical resonators allow to explore a vari- from a superconducting nanocrystaline diamond film, ety of physical phenomena. From a technological point grown on a silicon wafer with a 500 nm thick SiO2 layer. 1–3 of view, they can be used for ultra-sensitive mass , To be able to grow diamond on the Si/SiO2 surface, small force4–6, charge7,8 and displacement detection. On the diamond particles of a diameter smaller than 6 nm are more fundamental side, they offer fascinating perspec- seeded onto the silica substrate with the highest possi- tives for studying macroscopic quantum systems. -
Comparison Between Resonance and Non-Resonance Type Piezoelectric Acoustic Absorbers
sensors Article Comparison between Resonance and Non-Resonance Type Piezoelectric Acoustic Absorbers Joo Young Pyun , Young Hun Kim , Soo Won Kwon, Won Young Choi and Kwan Kyu Park * Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (J.Y.P.); [email protected] (Y.H.K.); [email protected] (S.W.K.); [email protected] (W.Y.C.) * Correspondence: [email protected] Received: 26 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: In this study, piezoelectric acoustic absorbers employing two receivers and one transmitter with a feedback controller were evaluated. Based on the target and resonance frequencies of the system, resonance and non-resonance models were designed and fabricated. With a lateral size less than half the wavelength, the model had stacked structures of lossy acoustic windows, polyvinylidene difluoride, and lead zirconate titanate-5A. The structures of both models were identical, except that the resonance model had steel backing material to adjust the center frequency. Both models were analyzed in the frequency and time domains, and the effectiveness of the absorbers was compared at the target and off-target frequencies. Both models were fabricated and acoustically and electrically characterized. Their reflection reduction ratios were evaluated in the quasi-continuous-wave and time-transient modes. Keywords: resonance model; non-resonance model; piezoelectric material 1. Introduction Piezoelectric transducers are used in various fields, such as nondestructive evaluation, image processing, acoustic signal detection, and energy harvesting [1–4]. Sound navigation and ranging (SONAR) is a technology for acoustic signal detection that can be used to detect objects under water. -
Criterion for the Electrical Resonance Stability of Offshore Wind Power
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 32, NO. 6, NOVEMBER 2017 4579 Criterion for the Electrical Resonance Stability of Offshore Wind Power Plants Connected Through HVDC Links Marc Cheah-Mane , Student Member, IEEE, Luis Sainz, Jun Liang, Senior Member, IEEE, Nick Jenkins, Fellow, IEEE, and Carlos Ernesto Ugalde-Loo , Member, IEEE Abstract—Electrical resonances may compromise the stability of instability during the energization of the offshore ac grid of HVDC-connected offshore wind power plants (OWPPs). In par- [3]–[5]. Such interactions are known as electrical resonance ticular, an offshore HVDC converter can reduce the damping of an instabilities [6]. In HVDC-connected OWPPs, the long export OWPP at low-frequency series resonances, leading to the system instability. The interaction between offshore HVDC converter con- ac cables and the power transformers located on the offshore trol and electrical resonances of offshore grids is analyzed in this HVDC substation cause series resonances at low frequencies in paper. An impedance-based representation of an OWPP is used the range of 100 ∼ 1000 Hz [3]–[5], [7]. Moreover, the offshore to analyze the effect that offshore converters have on the reso- grid is a poorly damped system directly connected without a nant frequency of the offshore grid and on system stability. The rotating mass or resistive loads [2], [3]. The control of the off- positive-net-damping criterion, originally proposed for subsyn- chronous analysis, has been adapted to determine the stability of shore HVDC converter can further reduce the total damping at the HVDC-connected OWPP. The reformulated criterion enables the resonant frequencies until the system becomes unstable. -
The Quartz Crystal Model and Its Frequencies
TECHNICAL NOTE 32 The quartz crystal model and its frequencies 1. Introduction The region between F1 and F2 is a region of positive In this note, we present some of the basic electrical reactance, and hence is called the inductive region. properties of quartz crystals. In particular, we For a given AC voltage across the crystal, the net present the 4-parameter crystal model, examine its current flow through the crystal is greatest at F1 and resonant and antiresonant frequencies, and determine least at F2. In loose terms, F1 is referred to as the the frequency at load capacitance. Our coverage is series-resonant frequency and F2 is referred to as the brief, yet complete enough to cover most cases of parallel-resonant frequency (also called practical interest. For further information, the antiresonance). interested reader should consult References [1] Likewise, we can express the impedance in terms of and [2]. The model and analysis is applicable to most its resistance (real part) and reactance (imaginary types of quartz crystals, in particular tuning-fork, part) as shown in Figure 2. extensional-mode, and AT-cut resonators. 1.1 Overview To begin, let’s look at the impedance of a real 20 MHz crystal around its fundamental mode. Figure 2—Impedance resistance R (log scale) and reactance X versus frequency for the same crystal shown in Figure 1. 4,000 3,000 Figure 1—Impedance magnitude |Z| (log scale) and phase θ versus frequency for an approximately 20 MHz crystal. 2,000 (Scans made with an Agilent 4294A Impedance Analyzer.) s] 1,000 In this impedance scan over frequency (Figure 1), we Reactance X [ohm 0 see the following qualitative behavior.