Creating a Global Climate Action Knowledge Graph to Leverage Artificial Intelligence and Speed Progress on the Climate Agenda

Total Page:16

File Type:pdf, Size:1020Kb

Creating a Global Climate Action Knowledge Graph to Leverage Artificial Intelligence and Speed Progress on the Climate Agenda Creating a global Climate Action Knowledge Graph to leverage artificial intelligence and speed progress on the climate agenda A positioning paper by July 2020 ​ 1 Table of Contents Summary 3 Objective 6 A connection gap, not an information gap 6 From knowledge management to knowledge discovery 9 The end of data silos 10 Why graph technology? 10 What is a knowledge graph? 11 How are knowledge graphs used today? 12 Benefits of an open knowledge graph for action on climate change 12 Accelerating learning 14 Creating a shared understanding through terminology 15 Expanding networks and increasing collaboration opportunities 15 The knowledge triangle 15 The power of explainable artificial intelligence through knowledge graphs 16 Developing the Climate Action Knowledge Graph 17 Steps to develop the Climate Action Knowledge Graph 18 Glossary 19 References 22 Authors 23 2 Summary Statement of purpose This positioning paper serves as an introduction to the often overlooked topic of how advanced data and information management practices can serve as a springboard to faster, more widespread, and more efficient climate action. It provides background on these issues for policymakers, researchers, decision makers, media and others interested in advancing climate change-related policies. The paper focuses on current challenges and readily available solutions for data and information management to further climate change adaptation, disaster risk reduction, and sustainable development agendas. It explains how a key tool - knowledge graphs - can better connect these communities and agendas to gain more traction in practice. It outlines how this single tool also sets the stage for the use of artificial intelligence methodologies that hold greater promise for innovation and progress. The paper provides real-world examples of the use of knowledge graphs in practice. The positioning paper proposes and argues for the development of a global Climate Action Knowledge Graph to address current barriers to the spread of needed knowledge and action. This new entity would create a comprehensive, contextualized knowledge base for the climate change adaptation, disaster risk reduction and broader climate action agendas in Europe initially, and would serve as an example of good knowledge management practice for these communities globally. It would interlink relevant but currently disconnected data, information, people, organizations and businesses, so that they can learn with and from one another. It would help all these players in the global quest to implement effective policies and measures to address major climate-related issues. The creation of a global Climate Action Knowledge Graph would enable: ● the rapid discovery of new insights and knowledge. ● the efficient exploration of important connections between domains (e.g. water, energy and agriculture) and/or stakeholders (e.g. research and industry). ● the provision of new approaches to learning. ● a foundation to set the stage to leverage powerful AI applications available now and on the technological horizon. ● a searchable, graph-based climate action knowledge management system that is easy to use, and that adds value by establishing and maintaining better links between science, policy, and climate action. 3 New advances in information technologies have a critical role to play in helping to reach global goals for climate action in line with the Paris Agreement1 and the 2030 Agenda.2 Technologies from the research frontier are also key to the success of many elements of the European Green Deal and new stimulus recovery packages proposed by the European Commission in response to the coronavirus pandemic. Specifically, investments in artificial intelligence (AI) will support aspects of European policy that are critical to achieving collective sustainable development commitments, and policy measures intended to spur economic growth, stimulate the labour market, build capacity and skills, and achieve societal resilience at all levels. As European Commission President Ursula von der Leyen has said of the recovery plan: “It turns the immense challenge we face into an opportunity…[...]...by investing in our future: the European Green Deal and digitalization will boost jobs and growth, the resilience of our societies and the health of our environment.”3 AI methods can serve as powerful tools to design and integrate responses to the world’s interlinked global missions to address climate change, reduce disaster risk, achieve sustainable development, and create healthy societies. The global aims are clear: to move “‘towards a resilient, sustainable and fair recovery path” and a “cleaner, digital and resilient future”.4 This positioning paper explores the ways in which the most cutting-edge technologies in information science can not only support but accelerate needed responses to climate change and its impacts. Such technological advancements are essential levers needed to move forward on two key issues: enhancing the use of enriched information and data in the world’s knowledge-driven economies; and creating usable, tailored, interdisciplinary and multilingual solutions for data and knowledge management systems. For example, consider ongoing efforts to align the three global agendas of climate change, disaster risk reduction and sustainable development, and to bring together all relevant stakeholders. Such integration requires analysis and evaluation of the different goals, common objectives and potential synergies (Figure 1). This can create a foundation for practical linkages in country efforts to achieve these global goals (Dazé et al., 2018). However, making these connections is complicated by the varying conceptualization and terminology used in the different communities. Measuring ambition and tracking progress achieved within each agenda in different countries and regions through the Global Stocktake on Adaptation (UNFCCC, 2015), for example, would benefit from a full description of all knowledge domains, so that they can be seamlessly linked, compared and contrasted. The current wave of AI technology will help knowledge managers and users to connect some of these dots in their data, and, what is more, to do so automatically. Applications that support this are generally based on knowledge graph technologies, which allow users to ​ 1 https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf ​ 2 https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustaina ble%20Development%20web.pdf 3 Europe's moment: Repair and prepare for the next generation, 27 May, 2020 press release: ​ ​ https://ec.europa.eu/commission/presscorner/detail/en/ip_20_940 4 ibid. ​ 4 map and describe complex knowledge domains and their heterogeneous data structures in an agile manner (Blumauer, 2018). This creates context and meaning across different domains and terminologies, and thereby interlinks disciplines, multiple data types, and a range of information repositories. Figure 1: Where different international policy processes connect, through direct references and through thematic linkages (Dazé et al., 2018).5 Knowledge graphs – technological tools that allow for unprecedented levels of sophistication in connecting disparate facets of knowledge – are becoming state-of-the-art in data science. What began as a Google initiative called Knowledge Graph in 2012 has since ​ ​ revolutionized data science, and, along with it, the ways in which people find the information ​ they seek – and the information they are able to find. Based on formal ontologies – in other ​ words, the explicit specifications of terms in given domains and the relationships among these terms (Gruber 1993) – a knowledge graph represents a collection of interlinked descriptions of entities. These are real-world objects, events, situations or abstract concepts. They contain large volumes of factual information and informal semantics, and make use of World Wide Web Consortium (W3C) semantic web principles,6 and thereby combine ​ 5 http://r9f.ab1.mwp.accessdomain.com/wp-content/uploads/2018/08/napgn-en-2018-alignment-to-adva nce-climate-resilient-development-overview-brief.pdf 6 https://en.wikipedia.org/wiki/Semantic_Web ​ 5 symbolic (e.g. knowledge models) and statistical (e.g. machine learning) AI methods for high-quality, comprehensive data and information management solutions. ​ ​ Knowledge graphs can seamlessly be developed and edited over time, with collaborative input and a clearly defined governance model. The initiative proposed here would thus provide a knowledge model to describe climate change action as it grows and evolves. Such a device potentially provides a needed and valuable public service. For example, those working on National Adaptation Plan (NAP) processes and national disaster risk reduction strategies, and others working in specific sectors such as water and health, could describe their own knowledge domains and define their needs, and learn about how these domains ​ link to other knowledge domains. This paper underscores the potential benefits of knowledge graphs. It offers examples of how knowledge graphs can help those working in different areas of climate change increase their collaboration, and leverage synergies between their different agendas. Objective The purpose of this concept note is to highlight the transformational potential that AI methods can have for the world of climate change research policy and practice. A cutting-edge team of leading semantic technology
Recommended publications
  • Semantic Search
    Semantic Search Philippe Cudre-Mauroux Definition ter grasp the semantics (i.e., meaning) and the context of the user query and/or Semantic Search regroups a set of of the indexed content in order to re- techniques designed to improve tra- trieve more meaningful results. ditional document or knowledge base Semantic Search techniques can search. Semantic Search aims at better be broadly categorized into two main grasping the context and the semantics groups depending on the target content: of the user query and/or of the indexed • techniques improving the relevance content by leveraging Natural Language of classical search engines where the Processing, Semantic Web and Machine query consists of natural language Learning techniques to retrieve more text (e.g., a list of keywords) and relevant results from a search engine. results are a ranked list of documents (e.g., webpages); • techniques retrieving semi-structured Overview data (e.g., entities or RDF triples) from a knowledge base (e.g., a knowledge graph or an ontology) Semantic Search is an umbrella term re- given a user query formulated either grouping various techniques for retriev- as natural language text or using ing more relevant content from a search a declarative query language like engine. Traditional search techniques fo- SPARQL. cus on ranking documents based on a set of keywords appearing both in the user’s Those two groups are described in query and in the indexed content. Se- more detail in the following section. For mantic Search, instead, attempts to bet- each group, a wide variety of techniques 1 2 Philippe Cudre-Mauroux have been proposed, ranging from Natu- matical tags (such as noun, conjunction ral Language Processing (to better grasp or verb) to individual words.
    [Show full text]
  • SEKI@Home, Or Crowdsourcing an Open Knowledge Graph
    SEKI@home, or Crowdsourcing an Open Knowledge Graph Thomas Steiner1? and Stefan Mirea2 1 Universitat Politècnica de Catalunya – Department LSI, Barcelona, Spain [email protected] 2 Computer Science, Jacobs University Bremen, Germany [email protected] Abstract. In May 2012, the Web search engine Google has introduced the so-called Knowledge Graph, a graph that understands real-world en- tities and their relationships to one another. It currently contains more than 500 million objects, as well as more than 3.5 billion facts about and relationships between these different objects. Soon after its announce- ment, people started to ask for a programmatic method to access the data in the Knowledge Graph, however, as of today, Google does not provide one. With SEKI@home, which stands for Search for Embedded Knowledge Items,weproposeabrowserextension-basedapproachtocrowdsource the task of populating a data store to build an Open Knowledge Graph. As people with the extension installed search on Google.com, the ex- tension sends extracted anonymous Knowledge Graph facts from Search Engine Results Pages (SERPs) to a centralized, publicly accessible triple store, and thus over time creates a SPARQL-queryable Open Knowledge Graph. We have implemented and made available a prototype browser extension tailored to the Google Knowledge Graph, however, note that the concept of SEKI@home is generalizable for other knowledge bases. 1Introduction 1.1 The Google Knowledge Graph With the introduction of the Knowledge Graph, the search engine Google has made a significant paradigm shift towards “things, not strings” [7], as a post on the official Google blog states. Entities covered by the Knowledge Graph include landmarks, celebrities, cities, sports teams, buildings, movies, celestial objects, works of art, and more.
    [Show full text]
  • Seo Report for Brands July 2019
    VOICE ASSISTANT SEO REPORT FOR BRANDS JULY 2019 GIVING VOICE TO A REVOLUTION Table of Contents About Voicebot About Magic + Co An Introduction to Voice Search Today // 3 Voicebot produces the leading independent Magic + Co. is a next-gen creative services firm research, online publication, newsletter and podcast whose core expertise is in designing, producing, and Consumer Adoption Trends // 10 focused on the voice and AI industries. Thousands executing on conversational strategy, the technology of entrepreneurs, developers, investors, analysts behind it, and associated marketing campaigns. Voice Search Results Analysis // 16 and other industry leaders look to Voicebot each Grading the Experts // 32 week for the latest news, data, analysis and insights Facts defining the trajectory of the next great computing • 25 people, technologists, strategists, and Practical Voice Assistant SEO Strategies // 36 platform. At Voicebot, we give voice to a revolution. creatives with focus on conversational design and technologies. Additional Resources // 39 • 1 Webby Award Nominee and 3 Honorees. • 3 years old and global leader. Methodology • We’ve worked primarily with CPG, but our practice extends into utilities, governments, Consumer survey data was collected online during banking, entertainment, healthcare and is the first week of January 2019 and included 1,038 international in scope. U.S. adults age 18 or older that were representative of U.S. Census demographic averages. Findings were compared to earlier survey data collected in Magic + Co. the first week of September 2018 that included responses from 1,040 U.S. adults. Voice search data results from Amazon Echo Smart Speakers with Alexa, Apple HomePod with Siri, Google Home and a Smartphone with Google Assistant, and Samsung Galaxy S10 with Bixby, were collected in Q2 2019.
    [Show full text]
  • Arxiv:1812.02903V1 [Cs.LG] 7 Dec 2018 Ized Server
    APPLIED FEDERATED LEARNING: IMPROVING GOOGLE KEYBOARD QUERY SUGGESTIONS Timothy Yang*, Galen Andrew*, Hubert Eichner* Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, Franc¸oise Beaufays Google LLC, Mountain View, CA, U.S.A. ftimyang, galenandrew, huberte haicsun, liweithu, kongn, dramage, [email protected] ABSTRACT timely suggestions are necessary in order to maintain rele- vance. On-device inference and training through FL enable Federated learning is a distributed form of machine learn- us to both minimize latency and maximize privacy. ing where both the training data and model training are decen- In this paper, we use FL in a commercial, global-scale tralized. In this paper, we use federated learning in a commer- setting to train and deploy a model to production for infer- cial, global-scale setting to train, evaluate and deploy a model ence – all without access to the underlying user data. Our to improve virtual keyboard search suggestion quality with- use case is search query suggestions [4]: when a user enters out direct access to the underlying user data. We describe our text, Gboard uses a baseline model to determine and possibly observations in federated training, compare metrics to live de- surface search suggestions relevant to the input. For instance, ployments, and present resulting quality increases. In whole, typing “Let’s eat at Charlie’s” may display a web query sug- we demonstrate how federated learning can be applied end- gestion to search for nearby restaurants of that name; other to-end to both improve user experiences and enhance user types of suggestions include GIFs and Stickers. Here, we privacy.
    [Show full text]
  • Knolwedge Acquisi$On from Music Digital Libraries
    Knolwedge Acquision from Music Digital Libraries Sergio Oramas, Mohamed Sordo Mo0vaon • Musicological Knowledge is hidden between the lines • Machines don’t know how to read Why Knowledge Acquisi0on? • Obtain knowledge automacally • Make complex ques0ons • Visualize the informaon • Improve navigaon • Share knowledge 4 Musical Libraries Musical Libraries digital recording, scan Musical Libraries OCR, manual transcrip0on digital recording, scan Musical Libraries Informaon Extrac0on, seman0c annotaon OCR, manual transcrip0on digital recording, scan Musical Libraries Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Musical Libraries Web search Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Musical Libraries Web search Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Seman0c Web • The Semanc Web aims at conver0ng the current web, dominated by unstructured and semi-structured documents into a web of linked data. • Achievements useful for Digital Libraries – Common framework for data representaon and interconnec0on (RDF, ontologies) – Seman0c technologies to annotate texts (En0ty Linking) – Language for complex queries (SPARQL) Wikipedia and DBpedia - Digital Encyclopedia - Knowledge Base - Unstructured - Structured - Keyword search - Query search 13 14 15 DBpedia • Dbpedia example queries – Composers born in Vienna in XVIII Century – American jazz musicians that have wri\en songs recorded by RCA
    [Show full text]
  • Google's Knowledge Graph
    Google’s Knowledge Graph Google has just announced that it will completely reshape the presentation of its search results. Instead of listing websites where people can find the answer to their queries, it will present data, links, pictures, etc. from its own databases, some 500 million “items”. The redesign is said to represent the biggest change in search for the last five years, not just conceptually but also in terms of business impact. The goal, of course, is to make sure that web surfers remain on Google properties instead of clicking away to another site for answers. Internet companies all over the world already complain and regulators can add the move to their list of Google features to investigate from an antitrust perspective. The announcement is also a subtle tactical move, just one day before Facebook’s IPO. It reinforces Google’s positioning as the owner of the “knowledge network” as opposed to the “social network”. It is hard to anticipate what the new ‘product’ will really be but there are a few important pointers. First, it will make connections between the different information elements. At the moment, search provides a list of sources but does not really categorize them. Knowledge Graph will and may even link the sources to one another. People (not least Tim Berners-Lee) have always argued for the, so called ‘semantic web’ to replace the traditional web. Google’s Knowledge Graph is a fine approximation of the idea. Another aspect of the service will, hopefully, have to do with formatting. We may get a more standardized presentation of the information, which is quite important for rapid processing.
    [Show full text]
  • The Rise of KNOWLEDGE GRAPHS
    THOUGHT LEADERSHIP SERIES The Rise of KNOWLEDGE GRAPHS 2019 | MAR THOUGHT LEADERSHIP SERIES | March 2019 2 MAKING NEW CONNECTIONS WITH KNOWLEDGE GRAPHS In today’s business world, time-to-insight and time-to-action are critical competitive differentiators. The demand for quick, easy access to information is growing. However, the challenge of combining data into meaningful information is also mounting—alongside the proliferation of data sources and types. While companies nowadays are investing heavily in initiatives to increase the amount of data at their disposal, most are spending more time finding than analyzing data. Data silos remain a huge problem at many enterprises, and legacy data management technologies and processes are having trouble keeping up with the speed, scalability, and flexibility requirements of new workloads and use cases. Data volumes are exploding in will be driven by specific applications Graph databases, a type of NoSQL organizations and the pressure to exploit and increasing expertise. “NoSQL” data database that employs structures that data for faster time to insight is management approaches, features, and with nodes, edges, and properties to increasing. Along with this store data and places data growth, there is a new a heavy emphasis wave of tools to expand The ability for knowledge graphs to gather on relationships, are what is possible with the growing in use. More proliferation of data and information, relationships, and insights—and recently, the term data types. connect those facts—allows organizations to “knowledge graph” While relational databases in particular has are still both the biggest discern context in data, which is important for gained popularity with source of transactional as well as complying with the introduction of data in most organizations extracting value several high-profile and the greatest source of increasingly stringent data privacy regulations.
    [Show full text]
  • Summarized by © Lakhasly.Com Real-Time Data Feeds Although It
    Real-time Data Feeds Although it doesn’t promote itself as such, Google is actually a collection of data and a set of tools for working with it. It has progressed from an index of web pages to a central hub for real-time data feeds on just about anything that can be measured such as weather reports, travel reports, stock market and shares, shopping suggestions, travel suggestions, and several other things. Sorting Tools Big Data analysis which implies utilizing tools intended to deal with and comprehend this massive data becomes an integral factor whenever users carry out a search query. The Google’s algorithms run complex calculations intended to match the questions that user entered with all the available data. It will try to determine whether the user is searching for news, people, facts or statistics, and retrieve the data from the appropriate feed. Knowledge Graph Pages Google Knowledge Graph is a tool or database which collects all the data and facts about people, places and things along with proper differentiation and relationship between them. It is then later used by Google in solving our queries with useful answers. Google knowledge graph is user-centric and it provides them with useful relevant information quickly and easily. Literal & Semantic search The main aim of the literal search engine is to find the root of your search phrase by looking for a match for some of the word or entire phrase. The root of the phrase is then examined and explored upon to display better search results. While semantic search engine tries to understand the context of the phrase by analyzing the terms and language in knowledge graph database to directly answer a question with specific information.
    [Show full text]
  • Messageontap: a Suggestive Interface to Facilitate Messaging-Related Tasks
    MessageOnTap: A Suggestive Interface to Facilitate Messaging-related Tasks Fanglin Chen Kewei Xia Human-Computer Interaction Institute Electronic Information School Carnegie Mellon University Wuhan University Pittsburgh, PA, USA Wuhan, China [email protected] [email protected] Karan Dhabalia Jason I. Hong Electrical and Computer Engineering Human-Computer Interaction Institute Carnegie Mellon University Carnegie Mellon University Pittsburgh, PA, USA Pittsburgh, PA, USA [email protected] [email protected] ABSTRACT KEYWORDS Text messages are sometimes prompts that lead to infor- Messaging/Communication, Information Seeking & Search; mation related tasks, e.g. checking one’s schedule, creating Contextual Computing; Personal Data/Tracking; User Expe- reminders, or sharing content. We introduce MessageOnTap, rience Design; Text/Speech/Language; Productivity a suggestive interface for smartphones that uses the text in ACM Reference Format: a conversation to suggest task shortcuts that can stream- Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason I. Hong. 2019. line likely next actions. When activated, MessageOnTap MessageOnTap: A Suggestive Interface to Facilitate Messaging- uses word embeddings to rank relevant external apps, and related Tasks. In CHI Conference on Human Factors in Computing parameterizes associated task shortcuts using key phrases Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland mentioned in the conversation, such as times, persons, or Uk. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/ events. MessageOnTap also tailors the auto-complete dictio- 3290605.3300805 nary based on text in the conversation, to streamline any 1 INTRODUCTION text input. We first conducted a month-long study of mes- Messaging apps are among the most popular apps for smart- saging behaviors (N=22) that informed our design.
    [Show full text]
  • Adding Realtime Coverage to the Google Knowledge Graph
    Adding Realtime Coverage to the Google Knowledge Graph Thomas Steiner1?, Ruben Verborgh2, Raphaël Troncy3, Joaquim Gabarro1, and Rik Van de Walle2 1 Universitat Politècnica de Catalunya – Department lsi, Spain {tsteiner,gabarro}@lsi.upc.edu 2 Ghent University – IBBT, ELIS – Multimedia Lab, Belgium {ruben.verborgh,rik.vandewalle}@ugent.be 3 EURECOM, Sophia Antipolis, France [email protected] Abstract. In May 2012, the Web search engine Google has introduced the so-called Knowledge Graph, a graph that understands real-world entities and their relationships to one another. Entities covered by the Knowledge Graph include landmarks, celebrities, cities, sports teams, buildings, movies, celestial objects, works of art, and more. The graph enhances Google search in three main ways: by disambiguation of search queries, by search log-based summarization of key facts, and by explo- rative search suggestions. With this paper, we suggest a fourth way of enhancing Web search: through the addition of realtime coverage of what people say about real-world entities on social networks. We report on a browser extension that seamlessly adds relevant microposts from the social networking sites Google+, Facebook, and Twitter in form of a panel to Knowledge Graph entities. In a true Linked Data fashion, we inter- link detected concepts in microposts with Freebase entities, and evaluate our approach for both relevancy and usefulness. The extension is freely available, we invite the reader to reconstruct the examples of this paper to see how realtime opinions may have changed since time of writing. 1 Introduction With the introduction of the Knowledge Graph, the search engine Google has made a significant paradigm shift towards “things, not strings” [3], as a post on the official Google blog states.
    [Show full text]
  • Enhancing Profile and Context Aware Relevant Food Search Through
    proceedings Article Enhancing Profile and Context Aware Relevant Food Search through Knowledge Graphs † Unai Zulaika *,‡, Asier Gutiérrez ‡ and Diego López-de-Ipiña ‡ DeustoTech—University of Deusto, Avda. Universidades 24, 48007 Bilbao, Spain; [email protected] (A.G.); [email protected] (D.L.-d.-I.) * Correspondence: [email protected] † Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018. ‡ These authors contributed equally to this work. Published: 25 October 2018 Abstract: Foodbar is a Cloud-based gastroevaluation solution, leveraging IBM Watson cognitive services. It brings together machine and human intelligence to enable cognitive gastroevaluation of “tapas” or “pintxos” , i.e., small miniature bites or dishes. Foodbar matchmakes users’ profiles, preferences and context against an elaborated knowledge graph based model of user and machine generated information about food items. This paper reasons about the suitability of this novel way of modelling heterogeneous, with diverse degree of veracity, information to offer more stakeholder satisfying knowledge exploitation solutions, i.e., those offering more relevant and elaborated, directly usable, information to those that want to take decisions regarding food in miniature. An evaluation of the information modelling power of such approach is performed highlighting why such model can offer better more relevant and enriched answers to natural language questions posed by users. Keywords: knowledge graphs; relevant search; recommendation systems; data models; inference; software architectures 1. Introduction Currently, many of us follow social opinion when choosing where to go for food. Particularly, when we go to a unknown environment. Google Places (https://developers.google.com/places/web- service/intro) and TripAdvisor (https://www.tripadvisor.com/) are two widely used services for this purpose.
    [Show full text]
  • Chapter 1 What Is a Knowledge Graph?
    Chapter 1 What Is a Knowledge Graph? 1.1 Introduction In recent years, knowledge graphs (KGs) have emerged as a major area in Artificial Intelligence (AI) [139]. Graphs have always been pervasive in the broader AI literature, but with the advent of large quantities of data on the Web (‘Big Data’) and in the broader commercial sphere, there emerged a need to enable machines to ‘understand’ and make use of this data in some productive analytical way. The inability of machines to truly understand English, and other ‘natural’ languages like it, with all their irregularities and nuances, has also been largely evident in the (unsuccessful) quest to achieve general AI and commonsense reasoning. Although much progress has been made in all of these domains, it is still very much the case that machines have an easier time processing structured data in the form of graphs, dictionaries and tables than in natural language. In modern history, Google was among the first big companies to recognize and couple this ability with that of providing richer search capabilities on the Web. In fact, the use of the term ‘Knowledge Graph’ in recent Computer Science articles, papers and posts, can be traced back to the Google Knowledge Graph, which was described in an influential blog post in the early 2010s. The basic motto behind the Google Knowledge Graph was to make search about things not strings [164]. In other words, it would allow search to evolve from simple string searching (with all its bells and whistles), to one that involved reasoning about entities, attributes and relationships.
    [Show full text]