WSDM 2018 JAY PUJARA and SAMEER SINGH Introducing Presenters

Total Page:16

File Type:pdf, Size:1020Kb

WSDM 2018 JAY PUJARA and SAMEER SINGH Introducing Presenters WSDM 2018 JAY PUJARA AND SAMEER SINGH Introducing Presenters Jay Pujara: Research Scientist at USC/ISI Sameer Singh: Assistant Professor at UCI 2 Tutorial Overview https://kgtutorial.github.io 3 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs 4 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs Part 2: Knowledge Extraction 5 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs Part 2: Part 3: Knowledge Graph Extraction Construction 6 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs Part 2: Part 3: Knowledge Graph Extraction Construction Part 4: Critical Analysis 7 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs Part 2: Part 3: Knowledge Graph Extraction Construction Part 4: Critical Analysis 8 Tutorial Overview https://kgtutorial.github.io Part 1: Knowledge Graphs Part 2: Part 3: Knowledge Extraction Graph Construction Part 4: Critical Analysis 9 Tutorial Outline 1. Knowledge Graph Primer [Jay] 2. Knowledge Extraction Primer [Jay] 3. Knowledge Graph Construction a. Probabilistic Models [Jay] Coffee Break b. Embedding Techniques [Sameer] 4. Critical Overview and Conclusion [Sameer] 10 What if I have a question? 11 Tutorial Overview Part 1: Knowledge Graphs Part 2: Part 3: Knowledge Graph Extraction Construction Part 4: Critical Analysis 12 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 13 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 14 What is a knowledge graph? 15 What is a knowledge graph? • Knowledge in graph form! 16 What is a knowledge graph? • Knowledge in graph form! • Captures entities, attributes, and relationships 17 What is a knowledge graph? • Knowledge in graph form! E1 • Captures entities, attributes, and relationships E2 • Nodes are entities E3 18 What is a knowledge graph? • Knowledge in graph form! A1 E 1 A2 • Captures entities, attributes, and relationships E2 • Nodes are entities A1 A • Nodes are labeled with 2 attributes (e.g., types) E3 A1 A3 19 What is a knowledge graph? • Knowledge in graph form! A1 E 1 A2 • Captures entities, attributes, and relationships E2 • Nodes are entities A1 A • Nodes are labeled with 2 attributes (e.g., types) E3 A1 • Typed edges between two A2 nodes capture a relationship between entities 20 Example knowledge graph • Knowledge in graph form! person John Lennon • Captures entities, attributes, and relationships band Beatles • Nodes are entities • Nodes are labeled with attributes (e.g., types) place Liverpool • Typed edges between two nodes capture a relationship between entities 21 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 22 Why knowledge graphs? • Humans: •Combat information overload •Explore via intuitive structure •Tool for supporting knowledge-driven tasks • AIs: •Key ingredient for many AI tasks •Bridge from data to human semantics •Use decades of work on graph analysis 23 Applications 1: QA/Agents 24 Applications 2: Decision Support 25 Applications 3: Fueling Discovery 26 Knowledge Graphs & Industry •Google Knowledge Graph • Google Knowledge Vault •Amazon Product Graph •Facebook Graph API •IBM Watson •Microsoft Satori • Project Hanover/Literome •LinkedIn Knowledge Graph •Yandex Object Answer •Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs, SpazioDati 27 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 28 Where do knowledge graphs come from? 29 Where do knowledge graphs come from? • Structured Text ◦ Wikipedia Infoboxes, tables, databases, social nets 30 Where do knowledge graphs come from? • Structured Text ◦ Wikipedia Infoboxes, tables, databases, social nets • Unstructured Text ◦ WWW, news, social media, reference articles 31 Where do knowledge graphs come from? • Structured Text ◦ Wikipedia Infoboxes, tables, databases, social nets • Unstructured Text ◦ WWW, news, social media, reference articles • Images 32 Where do knowledge graphs come from? • Structured Text ◦ Wikipedia Infoboxes, tables, databases, social nets • Unstructured Text ◦ WWW, news, social media, reference articles • Images • Video ◦ YouTube, video feeds 33 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 34 Hayes&McCarthy Brooks Frame Problem Subsumption Quillian ConceptNet Minsky, Filmore Semantic Frames Networks McCarthy Formalizing Commonsense Description Bobrow Logic STUDENT Simon&Newell General Problem Solver Lenant Winograd Cyc SHRDLU 2000 1990 1980 1970 1960 1950 1940 SHRUTI Rumelhart et al Series of Neural- BackPropagation Symbolic Models Minsky &Pappert McCulloch Systematicity “Perceptrons” &Pitts Debate Artificial Neurons SLIDE COURTESY OF DANIEL KHASHABI Knowledge Representation •Decades of research into knowledge representation •Most knowledge graph implementations use RDF triples • <rdf:subject, rdf:predicate, rdf:object> : r(s,p,o) • Temporal scoping, reification, and skolemization... •ABox (assertions) versus TBox (terminology) •Common ontological primitives • rdfs:domain, rdfs:range, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, ... • owl:inverseOf, owl:TransitiveProperty, owl:FunctionalProperty, ... 36 Semantic Web •Standards for defining and exchanging knowledge • RDF, RDFa, JSON-LD, schema.org • RDFS, OWL, SKOS, FOAF •Annotated data provide critical resource for automation •Major weakness: annotate everything? "LINKING OPEN DATA CLOUD DIAGRAM 2014, BY MAX SCHMACHTENBERG, CHRISTIAN BIZER, ANJA JENTZSCH AND RICHARD CYGANIAK. HTTP://LOD-CLOUD.NET/" 37 Information Extraction from Text •Focus of this tutorial! •Answer to the knowledge acquisition bottleneck •Many challenges: • chunking • polysemy/word sense disambiguation • entity coreference • relational extraction 38 Knowledge Graph Primer TOPICS: WHAT IS A KNOWLEDGE GRAPH? WHY ARE KNOWLEDGE GRAPHS IMPORTANT? WHERE DO KNOWLEDGE GRAPHS COME FROM? KNOWLEDGE REPRESENTATION CHOICES PROBLEM OVERVIEW 39 What is a knowledge graph? • Knowledge in graph form! A1 E 1 A2 • Captures entities, attributes, and relationships E2 • Nodes are entities A1 A • Nodes are labeled with 2 attributes (e.g., types) E3 A1 • Typed edges between two A2 nodes capture a relationship between entities 40 Basic problems A1 E 1 A2 E2 A1 A2 E3 A1 A2 41 Basic problems A1 E • Who are the entities 1 A2 (nodes) in the graph? E2 A1 A2 E3 A1 A2 42 Basic problems A1 E • Who are the entities 1 A2 (nodes) in the graph? • What are their attributes E2 and types (labels)? A1 A2 E3 A1 A2 43 Basic problems A1 E • Who are the entities 1 A2 (nodes) in the graph? • What are their attributes E2 and types (labels)? A1 A2 • How are they related E3 (edges)? A1 A2 44 Basic problems A1 E • Who are the entities 1 A2 (nodes) in the graph? • What are their attributes E2 and types (labels)? A1 A2 • How are they related E3 (edges)? A1 A2 45 Knowledge Graph Construction Knowledge Graph Extraction Construction 46 Two perspectives Knowledge Extraction Graph Construction • Who are the entities • Who are the entities (nodes) in the graph? (nodes) in the graph? • Named Entity Recognition • Entity Linking • Entity Coreference • Entity Resolution • What are their attributes • What are their attributes and types (labels)? and types (labels)? • Named Entity Recognition • Collective Classification • How are they related • How are they related (edges)? (edges)? • Relation Extraction • Link Prediction • Semantic Role Labeling 47 Tutorial Outline 1. Knowledge Graph Primer [Jay] 2. Knowledge Extraction Primer [Jay] 3. Knowledge Graph Construction a. Probabilistic Models [Jay] Coffee Break b. Embedding Techniques [Sameer] 4. Critical Overview and Conclusion [Sameer] 48.
Recommended publications
  • Semantic Search
    Semantic Search Philippe Cudre-Mauroux Definition ter grasp the semantics (i.e., meaning) and the context of the user query and/or Semantic Search regroups a set of of the indexed content in order to re- techniques designed to improve tra- trieve more meaningful results. ditional document or knowledge base Semantic Search techniques can search. Semantic Search aims at better be broadly categorized into two main grasping the context and the semantics groups depending on the target content: of the user query and/or of the indexed • techniques improving the relevance content by leveraging Natural Language of classical search engines where the Processing, Semantic Web and Machine query consists of natural language Learning techniques to retrieve more text (e.g., a list of keywords) and relevant results from a search engine. results are a ranked list of documents (e.g., webpages); • techniques retrieving semi-structured Overview data (e.g., entities or RDF triples) from a knowledge base (e.g., a knowledge graph or an ontology) Semantic Search is an umbrella term re- given a user query formulated either grouping various techniques for retriev- as natural language text or using ing more relevant content from a search a declarative query language like engine. Traditional search techniques fo- SPARQL. cus on ranking documents based on a set of keywords appearing both in the user’s Those two groups are described in query and in the indexed content. Se- more detail in the following section. For mantic Search, instead, attempts to bet- each group, a wide variety of techniques 1 2 Philippe Cudre-Mauroux have been proposed, ranging from Natu- matical tags (such as noun, conjunction ral Language Processing (to better grasp or verb) to individual words.
    [Show full text]
  • SEKI@Home, Or Crowdsourcing an Open Knowledge Graph
    SEKI@home, or Crowdsourcing an Open Knowledge Graph Thomas Steiner1? and Stefan Mirea2 1 Universitat Politècnica de Catalunya – Department LSI, Barcelona, Spain [email protected] 2 Computer Science, Jacobs University Bremen, Germany [email protected] Abstract. In May 2012, the Web search engine Google has introduced the so-called Knowledge Graph, a graph that understands real-world en- tities and their relationships to one another. It currently contains more than 500 million objects, as well as more than 3.5 billion facts about and relationships between these different objects. Soon after its announce- ment, people started to ask for a programmatic method to access the data in the Knowledge Graph, however, as of today, Google does not provide one. With SEKI@home, which stands for Search for Embedded Knowledge Items,weproposeabrowserextension-basedapproachtocrowdsource the task of populating a data store to build an Open Knowledge Graph. As people with the extension installed search on Google.com, the ex- tension sends extracted anonymous Knowledge Graph facts from Search Engine Results Pages (SERPs) to a centralized, publicly accessible triple store, and thus over time creates a SPARQL-queryable Open Knowledge Graph. We have implemented and made available a prototype browser extension tailored to the Google Knowledge Graph, however, note that the concept of SEKI@home is generalizable for other knowledge bases. 1Introduction 1.1 The Google Knowledge Graph With the introduction of the Knowledge Graph, the search engine Google has made a significant paradigm shift towards “things, not strings” [7], as a post on the official Google blog states. Entities covered by the Knowledge Graph include landmarks, celebrities, cities, sports teams, buildings, movies, celestial objects, works of art, and more.
    [Show full text]
  • Seo Report for Brands July 2019
    VOICE ASSISTANT SEO REPORT FOR BRANDS JULY 2019 GIVING VOICE TO A REVOLUTION Table of Contents About Voicebot About Magic + Co An Introduction to Voice Search Today // 3 Voicebot produces the leading independent Magic + Co. is a next-gen creative services firm research, online publication, newsletter and podcast whose core expertise is in designing, producing, and Consumer Adoption Trends // 10 focused on the voice and AI industries. Thousands executing on conversational strategy, the technology of entrepreneurs, developers, investors, analysts behind it, and associated marketing campaigns. Voice Search Results Analysis // 16 and other industry leaders look to Voicebot each Grading the Experts // 32 week for the latest news, data, analysis and insights Facts defining the trajectory of the next great computing • 25 people, technologists, strategists, and Practical Voice Assistant SEO Strategies // 36 platform. At Voicebot, we give voice to a revolution. creatives with focus on conversational design and technologies. Additional Resources // 39 • 1 Webby Award Nominee and 3 Honorees. • 3 years old and global leader. Methodology • We’ve worked primarily with CPG, but our practice extends into utilities, governments, Consumer survey data was collected online during banking, entertainment, healthcare and is the first week of January 2019 and included 1,038 international in scope. U.S. adults age 18 or older that were representative of U.S. Census demographic averages. Findings were compared to earlier survey data collected in Magic + Co. the first week of September 2018 that included responses from 1,040 U.S. adults. Voice search data results from Amazon Echo Smart Speakers with Alexa, Apple HomePod with Siri, Google Home and a Smartphone with Google Assistant, and Samsung Galaxy S10 with Bixby, were collected in Q2 2019.
    [Show full text]
  • Arxiv:1812.02903V1 [Cs.LG] 7 Dec 2018 Ized Server
    APPLIED FEDERATED LEARNING: IMPROVING GOOGLE KEYBOARD QUERY SUGGESTIONS Timothy Yang*, Galen Andrew*, Hubert Eichner* Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, Franc¸oise Beaufays Google LLC, Mountain View, CA, U.S.A. ftimyang, galenandrew, huberte haicsun, liweithu, kongn, dramage, [email protected] ABSTRACT timely suggestions are necessary in order to maintain rele- vance. On-device inference and training through FL enable Federated learning is a distributed form of machine learn- us to both minimize latency and maximize privacy. ing where both the training data and model training are decen- In this paper, we use FL in a commercial, global-scale tralized. In this paper, we use federated learning in a commer- setting to train and deploy a model to production for infer- cial, global-scale setting to train, evaluate and deploy a model ence – all without access to the underlying user data. Our to improve virtual keyboard search suggestion quality with- use case is search query suggestions [4]: when a user enters out direct access to the underlying user data. We describe our text, Gboard uses a baseline model to determine and possibly observations in federated training, compare metrics to live de- surface search suggestions relevant to the input. For instance, ployments, and present resulting quality increases. In whole, typing “Let’s eat at Charlie’s” may display a web query sug- we demonstrate how federated learning can be applied end- gestion to search for nearby restaurants of that name; other to-end to both improve user experiences and enhance user types of suggestions include GIFs and Stickers. Here, we privacy.
    [Show full text]
  • Knolwedge Acquisi$On from Music Digital Libraries
    Knolwedge Acquision from Music Digital Libraries Sergio Oramas, Mohamed Sordo Mo0vaon • Musicological Knowledge is hidden between the lines • Machines don’t know how to read Why Knowledge Acquisi0on? • Obtain knowledge automacally • Make complex ques0ons • Visualize the informaon • Improve navigaon • Share knowledge 4 Musical Libraries Musical Libraries digital recording, scan Musical Libraries OCR, manual transcrip0on digital recording, scan Musical Libraries Informaon Extrac0on, seman0c annotaon OCR, manual transcrip0on digital recording, scan Musical Libraries Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Musical Libraries Web search Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Musical Libraries Web search Informaon Extrac0on, seman0c annotaon Current DL OCR, manual transcrip0on digital recording, scan Seman0c Web • The Semanc Web aims at conver0ng the current web, dominated by unstructured and semi-structured documents into a web of linked data. • Achievements useful for Digital Libraries – Common framework for data representaon and interconnec0on (RDF, ontologies) – Seman0c technologies to annotate texts (En0ty Linking) – Language for complex queries (SPARQL) Wikipedia and DBpedia - Digital Encyclopedia - Knowledge Base - Unstructured - Structured - Keyword search - Query search 13 14 15 DBpedia • Dbpedia example queries – Composers born in Vienna in XVIII Century – American jazz musicians that have wri\en songs recorded by RCA
    [Show full text]
  • Google's Knowledge Graph
    Google’s Knowledge Graph Google has just announced that it will completely reshape the presentation of its search results. Instead of listing websites where people can find the answer to their queries, it will present data, links, pictures, etc. from its own databases, some 500 million “items”. The redesign is said to represent the biggest change in search for the last five years, not just conceptually but also in terms of business impact. The goal, of course, is to make sure that web surfers remain on Google properties instead of clicking away to another site for answers. Internet companies all over the world already complain and regulators can add the move to their list of Google features to investigate from an antitrust perspective. The announcement is also a subtle tactical move, just one day before Facebook’s IPO. It reinforces Google’s positioning as the owner of the “knowledge network” as opposed to the “social network”. It is hard to anticipate what the new ‘product’ will really be but there are a few important pointers. First, it will make connections between the different information elements. At the moment, search provides a list of sources but does not really categorize them. Knowledge Graph will and may even link the sources to one another. People (not least Tim Berners-Lee) have always argued for the, so called ‘semantic web’ to replace the traditional web. Google’s Knowledge Graph is a fine approximation of the idea. Another aspect of the service will, hopefully, have to do with formatting. We may get a more standardized presentation of the information, which is quite important for rapid processing.
    [Show full text]
  • The Rise of KNOWLEDGE GRAPHS
    THOUGHT LEADERSHIP SERIES The Rise of KNOWLEDGE GRAPHS 2019 | MAR THOUGHT LEADERSHIP SERIES | March 2019 2 MAKING NEW CONNECTIONS WITH KNOWLEDGE GRAPHS In today’s business world, time-to-insight and time-to-action are critical competitive differentiators. The demand for quick, easy access to information is growing. However, the challenge of combining data into meaningful information is also mounting—alongside the proliferation of data sources and types. While companies nowadays are investing heavily in initiatives to increase the amount of data at their disposal, most are spending more time finding than analyzing data. Data silos remain a huge problem at many enterprises, and legacy data management technologies and processes are having trouble keeping up with the speed, scalability, and flexibility requirements of new workloads and use cases. Data volumes are exploding in will be driven by specific applications Graph databases, a type of NoSQL organizations and the pressure to exploit and increasing expertise. “NoSQL” data database that employs structures that data for faster time to insight is management approaches, features, and with nodes, edges, and properties to increasing. Along with this store data and places data growth, there is a new a heavy emphasis wave of tools to expand The ability for knowledge graphs to gather on relationships, are what is possible with the growing in use. More proliferation of data and information, relationships, and insights—and recently, the term data types. connect those facts—allows organizations to “knowledge graph” While relational databases in particular has are still both the biggest discern context in data, which is important for gained popularity with source of transactional as well as complying with the introduction of data in most organizations extracting value several high-profile and the greatest source of increasingly stringent data privacy regulations.
    [Show full text]
  • Summarized by © Lakhasly.Com Real-Time Data Feeds Although It
    Real-time Data Feeds Although it doesn’t promote itself as such, Google is actually a collection of data and a set of tools for working with it. It has progressed from an index of web pages to a central hub for real-time data feeds on just about anything that can be measured such as weather reports, travel reports, stock market and shares, shopping suggestions, travel suggestions, and several other things. Sorting Tools Big Data analysis which implies utilizing tools intended to deal with and comprehend this massive data becomes an integral factor whenever users carry out a search query. The Google’s algorithms run complex calculations intended to match the questions that user entered with all the available data. It will try to determine whether the user is searching for news, people, facts or statistics, and retrieve the data from the appropriate feed. Knowledge Graph Pages Google Knowledge Graph is a tool or database which collects all the data and facts about people, places and things along with proper differentiation and relationship between them. It is then later used by Google in solving our queries with useful answers. Google knowledge graph is user-centric and it provides them with useful relevant information quickly and easily. Literal & Semantic search The main aim of the literal search engine is to find the root of your search phrase by looking for a match for some of the word or entire phrase. The root of the phrase is then examined and explored upon to display better search results. While semantic search engine tries to understand the context of the phrase by analyzing the terms and language in knowledge graph database to directly answer a question with specific information.
    [Show full text]
  • Messageontap: a Suggestive Interface to Facilitate Messaging-Related Tasks
    MessageOnTap: A Suggestive Interface to Facilitate Messaging-related Tasks Fanglin Chen Kewei Xia Human-Computer Interaction Institute Electronic Information School Carnegie Mellon University Wuhan University Pittsburgh, PA, USA Wuhan, China [email protected] [email protected] Karan Dhabalia Jason I. Hong Electrical and Computer Engineering Human-Computer Interaction Institute Carnegie Mellon University Carnegie Mellon University Pittsburgh, PA, USA Pittsburgh, PA, USA [email protected] [email protected] ABSTRACT KEYWORDS Text messages are sometimes prompts that lead to infor- Messaging/Communication, Information Seeking & Search; mation related tasks, e.g. checking one’s schedule, creating Contextual Computing; Personal Data/Tracking; User Expe- reminders, or sharing content. We introduce MessageOnTap, rience Design; Text/Speech/Language; Productivity a suggestive interface for smartphones that uses the text in ACM Reference Format: a conversation to suggest task shortcuts that can stream- Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason I. Hong. 2019. line likely next actions. When activated, MessageOnTap MessageOnTap: A Suggestive Interface to Facilitate Messaging- uses word embeddings to rank relevant external apps, and related Tasks. In CHI Conference on Human Factors in Computing parameterizes associated task shortcuts using key phrases Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland mentioned in the conversation, such as times, persons, or Uk. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/ events. MessageOnTap also tailors the auto-complete dictio- 3290605.3300805 nary based on text in the conversation, to streamline any 1 INTRODUCTION text input. We first conducted a month-long study of mes- Messaging apps are among the most popular apps for smart- saging behaviors (N=22) that informed our design.
    [Show full text]
  • Adding Realtime Coverage to the Google Knowledge Graph
    Adding Realtime Coverage to the Google Knowledge Graph Thomas Steiner1?, Ruben Verborgh2, Raphaël Troncy3, Joaquim Gabarro1, and Rik Van de Walle2 1 Universitat Politècnica de Catalunya – Department lsi, Spain {tsteiner,gabarro}@lsi.upc.edu 2 Ghent University – IBBT, ELIS – Multimedia Lab, Belgium {ruben.verborgh,rik.vandewalle}@ugent.be 3 EURECOM, Sophia Antipolis, France [email protected] Abstract. In May 2012, the Web search engine Google has introduced the so-called Knowledge Graph, a graph that understands real-world entities and their relationships to one another. Entities covered by the Knowledge Graph include landmarks, celebrities, cities, sports teams, buildings, movies, celestial objects, works of art, and more. The graph enhances Google search in three main ways: by disambiguation of search queries, by search log-based summarization of key facts, and by explo- rative search suggestions. With this paper, we suggest a fourth way of enhancing Web search: through the addition of realtime coverage of what people say about real-world entities on social networks. We report on a browser extension that seamlessly adds relevant microposts from the social networking sites Google+, Facebook, and Twitter in form of a panel to Knowledge Graph entities. In a true Linked Data fashion, we inter- link detected concepts in microposts with Freebase entities, and evaluate our approach for both relevancy and usefulness. The extension is freely available, we invite the reader to reconstruct the examples of this paper to see how realtime opinions may have changed since time of writing. 1 Introduction With the introduction of the Knowledge Graph, the search engine Google has made a significant paradigm shift towards “things, not strings” [3], as a post on the official Google blog states.
    [Show full text]
  • Enhancing Profile and Context Aware Relevant Food Search Through
    proceedings Article Enhancing Profile and Context Aware Relevant Food Search through Knowledge Graphs † Unai Zulaika *,‡, Asier Gutiérrez ‡ and Diego López-de-Ipiña ‡ DeustoTech—University of Deusto, Avda. Universidades 24, 48007 Bilbao, Spain; [email protected] (A.G.); [email protected] (D.L.-d.-I.) * Correspondence: [email protected] † Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018. ‡ These authors contributed equally to this work. Published: 25 October 2018 Abstract: Foodbar is a Cloud-based gastroevaluation solution, leveraging IBM Watson cognitive services. It brings together machine and human intelligence to enable cognitive gastroevaluation of “tapas” or “pintxos” , i.e., small miniature bites or dishes. Foodbar matchmakes users’ profiles, preferences and context against an elaborated knowledge graph based model of user and machine generated information about food items. This paper reasons about the suitability of this novel way of modelling heterogeneous, with diverse degree of veracity, information to offer more stakeholder satisfying knowledge exploitation solutions, i.e., those offering more relevant and elaborated, directly usable, information to those that want to take decisions regarding food in miniature. An evaluation of the information modelling power of such approach is performed highlighting why such model can offer better more relevant and enriched answers to natural language questions posed by users. Keywords: knowledge graphs; relevant search; recommendation systems; data models; inference; software architectures 1. Introduction Currently, many of us follow social opinion when choosing where to go for food. Particularly, when we go to a unknown environment. Google Places (https://developers.google.com/places/web- service/intro) and TripAdvisor (https://www.tripadvisor.com/) are two widely used services for this purpose.
    [Show full text]
  • Chapter 1 What Is a Knowledge Graph?
    Chapter 1 What Is a Knowledge Graph? 1.1 Introduction In recent years, knowledge graphs (KGs) have emerged as a major area in Artificial Intelligence (AI) [139]. Graphs have always been pervasive in the broader AI literature, but with the advent of large quantities of data on the Web (‘Big Data’) and in the broader commercial sphere, there emerged a need to enable machines to ‘understand’ and make use of this data in some productive analytical way. The inability of machines to truly understand English, and other ‘natural’ languages like it, with all their irregularities and nuances, has also been largely evident in the (unsuccessful) quest to achieve general AI and commonsense reasoning. Although much progress has been made in all of these domains, it is still very much the case that machines have an easier time processing structured data in the form of graphs, dictionaries and tables than in natural language. In modern history, Google was among the first big companies to recognize and couple this ability with that of providing richer search capabilities on the Web. In fact, the use of the term ‘Knowledge Graph’ in recent Computer Science articles, papers and posts, can be traced back to the Google Knowledge Graph, which was described in an influential blog post in the early 2010s. The basic motto behind the Google Knowledge Graph was to make search about things not strings [164]. In other words, it would allow search to evolve from simple string searching (with all its bells and whistles), to one that involved reasoning about entities, attributes and relationships.
    [Show full text]