An Effective Machine Learning Approach for Disease Predictive Modelling in Medical Application

Total Page:16

File Type:pdf, Size:1020Kb

An Effective Machine Learning Approach for Disease Predictive Modelling in Medical Application INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616 An Effective Machine Learning Approach For Disease Predictive Modelling In Medical Application Priya G, Radhika A Abstract— Most illnesses are lethal if left untreated and most of the people don't know whether they have a certain disorder or not. Therefore, it is necessary to diagnose the disease at an earlier stage to improve the life expectancy of the affected individuals. The cancer disease is the most deadly disease which needs to be identified and diagnosed earlier. In particular, breast cancer is the most common cancer among women in the world with a high death rate. Hence breast cancer disease needed to be predicted earlier to lead a life healthier. In this paper, a novel predictive modelling technique is implemented with the combination of the logistic regression, random forest and deep neural network to predict breast cancer. The performance of proposed model has been evaluated in terms of measuring accuracy, precision, recall and F1-score. For our proposed ensemble technique, we gain accuracy of 97.6%, precision of 97%, recall of 97% and an F1-score of 97%. The result that we obtained through the ensemble technique is exceptional when compared to the traditional method like logistic regression and conventional method like the random forest. Index Terms— Breast Cancer, Deep Neural Network, Disease predictive modelling, Machine Learning algorithms, Principal component analysis —————————— —————————— 1. INTRODUCTION cancer data. LLR model is derived from LASSO (Least IN recent days, most non-communicable diseases such as Absolute Shrinkage and Selection Operator) Logistic cancer, heart disease, etc. are mainly based on unhealthy Regression. Machine learning technique, i.e. fuzzy-based lifestyles and morbidity [1]. Where two-thirds of global deaths logistic regression, has been implemented to select the cancer are caused by cancer and breast cancer is one of these. gene data via feature selection. The average classification Further, that breast cancer is most common cancer among accuracy on the breast cancer dataset with 116 cases was women. The prevalence of breast cancer is growing across the found to be 94.05 % and also the model achieve productivity globe. According to the 2002 World Health Report, the cause with the lower error rate. The LLR system still has some of breast cancer depends on five factors such as sedentary drawbacks like the model that has only been tested with 116 lifestyle, smoking, insufficient breastfeeding, unhealthy diet, instances that are tiny databases. With a large data set, it and excess alcohol usage. Breast cancer is developed from should be evaluated in future. The study by Singh [4] glandular milk ducts epithelial cells of the breast. It's one of the evaluated the ability of anthropometric and medical tumour types; the name of the tumour is a malignant tumour. measurements for breast cancer screening using a list of 116 Further, the non-cancer tumour is called benign. Several cases. Different elements of the machine learning model were diagnostic procedures are required for the doctor or surgeon incorporated. Further, the performance is analysed and to decide cancer is a benign tumour or a malignant tumour [2]. calculated using feature selection, cross-validation, and The doctor uses several measurements, such as cell type classification method. Consequently, the resistin, insulin, age, uniformity, clump density, cell size uniformity, etc., to diagnose HOMA and glucose were used to get biomarkers accuracy for breast cancer, but still, the outcome is not accurate. This has the detection of breast cancer. Furthermore, more research is led particularly to an increase in the use of machine learning needed to verify such results with more factors on a greater and computing as diagnostic tools. Therefore, new diagnostic and multi-centred anthropometric measurement and medical tools or new techniques for predicting breast cancer needs to and database. In the future, the accuracy could be compared be developed earlier in order to extend human life. with the advanced technologies like a deep neural network with a larger database. Study by Tapak et al [5] compared and 2. RELATED WORK predicted breast cancer (BC) metastasis and survival using six In the related work, we have analysed few research related to machine learning methods and two traditional methods such breast cancer with different predictive modelling using as Support Vector Machine (SVM), Naive Bayes (NB), Linear machine learning techniques like fuzzy-based logistic Discriminant Analysis, AdaBoost, Random Forest (RF), regression, Support Vector Machine (SVM), Naive Bayes (NB), Logistic Regression (LR) and Least-square SVM (LSSVM) and Linear Discriminant Analysis, AdaBoost, Random Forest (RF), Adabag. In this study, the researcher used a database Logistic Regression (LR) and Least-square SVM (LSSVM) and composed of 550 patients with breast cancer. The Adabag. The brief summary of these methods with issues for performances such as accuracy specificity, sensitivity and the same are discussed as follows: Research by Nandagopal likelihood ratio were evaluated using these techniques. As a et al. [3] employed a novel regression method called LLR. It is result, the highest specificity is, therefore, RF, which is 98%, used to detect the victim gene using the classification of the accuracy of SVM is 93% and accuracy of LDA is 93% and the highest sensitivity is 36%, that is NB. Research by Liu, [6] _______________________________ used the Sklearn machine learning library, the logistic regression technique to predict breast cancer by classifying Priya G is currently pursing PhD (part-time) in the Department of the dataset. The Wisconsin diagnostic breast cancer (WDBC) dataset is used in this research. In this experiment, two Statistics, Periyar University, Salem characteristics, that is mean texture and mean radius is used Radhika A is currently working as Assistant Professor, for classification. In classification, the accuracy is 90.48 % Department of Statistics, Periyar University, Salem when choosing the maximum texture and 96.5 % when 2819 IJSTR©2020 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616 choosing the maximum radius. Maximum result for the conventional method of machine learning is 96.5%. Therefore, in the future, a better combination of features must be chosen to improve the accuracy of the classification. Research by Jain and Bhaumik [7] proposed Application Specific Integrated Circuit (ASIC) model depend on forward search to diagnosis cardiovascular disease on smart mobile. It is the diagnostic algorithm for the processing of the ECG signal. The ASIC is the low computational detecting algorithm and to evaluate cardiovascular disease diagnostic dataset Physionet PTB ECG is used. The algorithms accurately predicted the T wave parameters, P wave, ST-segment and QRS complex. As a result, the specificity of the P(T) wave is 91.07% and the sensitivity is 98.91% respectively. In the future, different datasets need to be used by the proposed model to predict cardiovascular disease on smart mobile. From the review of literature, different machine techniques will be applied to study disease like breast cancer [6], [8] and cardiovascular disease [9] Jain and Bhaumik,[7]. Overall, earlier research has produced decent results to predict breast cancer disease. Nevertheless, the earlier method of detection needs improvisation. We also believe that the ensemble methodology using machine learning and data mining can help to predict breast cancer accurately and also help to minimize previous diagnostic errors. As a result, the ensemble predictive method ultimately delivers the patient with good quality services. 3. RESEARCH METHODOLOGY The aim of the research is to predict where the patient has Benign tumour (non-cancerous) or Malignant tumour Fig. 1. Proposed Method (LR, RF and DNN) (cancerous). We have outlined an ensemble predictive model to come with the most accurate predictions. The system 3.1 System Configuration consists of the following major phases like system In this research work, an effective disease predictive modeling configuration, dataset selection, data scaling, feature in medical application is implemented in python using three selection, feature extraction, and classification. Finally, the machine learning techniques - Logistic regression, random result is obtained using the confusion matrix and performance forest, and deep neural network. The study's experimental metric. The workflow below outlines a basic review of the findings were all performed on a computer with a high visual entire research methodology: interface configuration and operating system setup. The experiment is conducted on the test machine configured with 1. System Configuration Intel (R) Core (TM) i7 processor with 16GB of RAM running 2. Selection of dataset 64-bit Windows 10 Operating system. The data transformation 3. Data Pre-processing and model training were executed using python 3.7 software. The detail of the system configuration is represented in table Checking for missing value 1. Data scaling (i.e. Standardization) TABLE 1 Feature selection (i.e. Random Forest) System Configuration Feature extraction (i.e PCA) 4. Training and Testing by the classifier (i.e. Logistic Regression and Deep Neural Network) 5. The performance metric is evaluated using the confusion matrix;
Recommended publications
  • Health Outcomes from Home Hospitalization: Multisource Predictive Modeling
    JOURNAL OF MEDICAL INTERNET RESEARCH Calvo et al Original Paper Health Outcomes from Home Hospitalization: Multisource Predictive Modeling Mireia Calvo1, PhD; Rubèn González2, MSc; Núria Seijas2, MSc, RN; Emili Vela3, MSc; Carme Hernández2, PhD; Guillem Batiste2, MD; Felip Miralles4, PhD; Josep Roca2, MD, PhD; Isaac Cano2*, PhD; Raimon Jané1*, PhD 1Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Universitat Politècnica de Catalunya (UPC), CIBER-BBN, Barcelona, Spain 2Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain 3Àrea de sistemes d'informació, Servei Català de la Salut, Barcelona, Spain 4Eurecat, Technology Center of Catalonia, Barcelona, Spain *these authors contributed equally Corresponding Author: Isaac Cano, PhD Hospital Clínic de Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona (UB) Villarroel 170 Barcelona, 08036 Spain Phone: 34 932275540 Email: [email protected] Abstract Background: Home hospitalization is widely accepted as a cost-effective alternative to conventional hospitalization for selected patients. A recent analysis of the home hospitalization and early discharge (HH/ED) program at Hospital Clínic de Barcelona over a 10-year period demonstrated high levels of acceptance by patients and professionals, as well as health value-based generation at the provider and health-system levels. However, health risk assessment was identified as an unmet need with the potential to enhance clinical decision making. Objective: The objective of this study is to generate and assess predictive models of mortality and in-hospital admission at entry and at HH/ED discharge. Methods: Predictive modeling of mortality and in-hospital admission was done in 2 different scenarios: at entry into the HH/ED program and at discharge, from January 2009 to December 2015.
    [Show full text]
  • Review on Predictive Modelling Techniques for Identifying Students at Risk in University Environment
    MATEC Web of Conferences 255, 03002 (2019) https://doi.org/10.1051/matecconf/20192 5503002 EAAI Conference 2018 Review on Predictive Modelling Techniques for Identifying Students at Risk in University Environment Nik Nurul Hafzan Mat Yaacob1,*, Safaai Deris1,3, Asiah Mat2, Mohd Saberi Mohamad1,3, Siti Syuhaida Safaai1 1Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia 2Faculty of Creative and Heritage Technology, Universiti Malaysia Kelantan,16300 Bachok, Kelantan, Malaysia 3Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia Abstract. Predictive analytics including statistical techniques, predictive modelling, machine learning, and data mining that analyse current and historical facts to make predictions about future or otherwise unknown events. Higher education institutions nowadays are under increasing pressure to respond to national and global economic, political and social changes such as the growing need to increase the proportion of students in certain disciplines, embedding workplace graduate attributes and ensuring that the quality of learning programs are both nationally and globally relevant. However, in higher education institution, there are significant numbers of students that stop their studies before graduation, especially for undergraduate students. Problem related to stopping out student and late or not graduating student can be improved by applying analytics. Using analytics, administrators, instructors and student can predict what will happen in future. Administrator and instructors can decide suitable intervention programs for at-risk students and before students decide to leave their study. Many different machine learning techniques have been implemented for predictive modelling in the past including decision tree, k-nearest neighbour, random forest, neural network, support vector machine, naïve Bayesian and a few others.
    [Show full text]
  • From Exploratory Data Analysis to Predictive Modeling and Machine Learning Gilbert Saporta
    50 Years of Data Analysis: From Exploratory Data Analysis to Predictive Modeling and Machine Learning Gilbert Saporta To cite this version: Gilbert Saporta. 50 Years of Data Analysis: From Exploratory Data Analysis to Predictive Modeling and Machine Learning. Christos Skiadas; James Bozeman. Data Analysis and Applications 1. Clus- tering and Regression, Modeling-estimating, Forecasting and Data Mining, ISTE-Wiley, 2019, Data Analysis and Applications, 978-1-78630-382-0. 10.1002/9781119597568.fmatter. hal-02470740 HAL Id: hal-02470740 https://hal-cnam.archives-ouvertes.fr/hal-02470740 Submitted on 11 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 50 years of data analysis: from exploratory data analysis to predictive modelling and machine learning Gilbert Saporta CEDRIC-CNAM, France In 1962, J.W.Tukey wrote his famous paper “The future of data analysis” and promoted Exploratory Data Analysis (EDA), a set of simple techniques conceived to let the data speak, without prespecified generative models. In the same spirit J.P.Benzécri and many others developed multivariate descriptive analysis tools. Since that time, many generalizations occurred, but the basic methods (SVD, k-means, …) are still incredibly efficient in the Big Data era.
    [Show full text]
  • Data Mining and Exploration Michael Gutmann the University of Edinburgh
    Lecture Notes Data Mining and Exploration Michael Gutmann The University of Edinburgh Spring Semester 2017 February 27, 2017 Contents 1 First steps in exploratory data analysis1 1.1 Distribution of single variables....................1 1.1.1 Numerical summaries.....................1 1.1.2 Graphs.............................6 1.2 Joint distribution of two variables................... 10 1.2.1 Numerical summaries..................... 10 1.2.2 Graphs............................. 14 1.3 Simple preprocessing.......................... 15 1.3.1 Simple outlier detection.................... 15 1.3.2 Data standardisation...................... 15 2 Principal component analysis 19 2.1 PCA by sequential variance maximisation.............. 19 2.1.1 First principal component direction............. 19 2.1.2 Subsequent principal component directions......... 21 2.2 PCA by simultaneous variance maximisation............ 23 2.2.1 Principle............................ 23 2.2.2 Sequential maximisation yields simultaneous maximisation∗ 23 2.3 PCA by minimisation of approximation error............ 25 2.3.1 Principle............................ 26 2.3.2 Equivalence to PCA by variance maximisation....... 27 2.4 PCA by low rank matrix approximation............... 28 2.4.1 Approximating the data matrix................ 28 2.4.2 Approximating the sample covariance matrix........ 30 2.4.3 Approximating the Gram matrix............... 30 3 Dimensionality reduction 33 3.1 Dimensionality reduction by PCA.................. 33 3.1.1 From data points........................ 33 3.1.2 From inner products...................... 34 3.1.3 From distances......................... 35 3.1.4 Example............................. 36 3.2 Dimensionality reduction by kernel PCA............... 37 3.2.1 Idea............................... 37 3.2.2 Kernel trick........................... 38 3.2.3 Example............................. 39 3.3 Multidimensional scaling........................ 40 iv CONTENTS 3.3.1 Metric MDS..........................
    [Show full text]
  • Comparing Out-Of-Sample Predictive Ability of PLS, Covariance, and Regression Models Completed Research Paper
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Comparing Out-of-Sample Predictive Ability of PLS, Covariance, and Regression Models Completed Research Paper Joerg Evermann Mary Tate Memorial University of Newfoundland Victoria University of Wellington St. John’s, Canada Wellington, New Zealand [email protected] [email protected] Abstract Partial Least Squares Path Modelling (PLSPM) is a popular technique for estimating structural equation models in the social sciences, and is frequently presented as an alternative to covariance-based analysis as being especially suited for predictive modeling. While existing research on PLSPM has focused on its use in causal- explanatory modeling, this paper follows two recent papers at ICIS 2012 and 2013 in examining how PLSPM performs when used for predictive purposes. Additionally, as a predictive technique, we compare PLSPM to traditional regression methods that are widely used for predictive modelling in other disciplines. Specifically, we employ out-of- sample k-fold cross-validation to compare PLSPM to covariance-SEM and a range of a- theoretical regression techniques in a simulation study. Our results show that PLSPM offers advantages over covariance-SEM and other prediction methods. Keywords: Research Methods, Statistical methods, Structural equation modeling (SEM), Predictive modeling, Partial Least Squares, Covariance Analysis, Regression Introduction Explanation and prediction are two main purposes of theories and statistical methods (Gregor, 2006). Explanation is concerned with the identification of causal mechanisms underlying a phenomenon. On the statistical level, explanation is primarily concerned with testing the faithful representation of causal mechanisms by the statistical model and the estimation of true population parameter values from samples.
    [Show full text]
  • Deciding the Best Machine Learning Algorithm for Customer Attrition Prediction for a Telecommunication Company
    American Journal of Engineering Research (AJER) 2020 American Journal of Engineering Research (AJER) e-ISSN: 2320-0847 p-ISSN : 2320-0936 Volume-9, Issue-2, pp-1-7 www.ajer.org Research Paper Open Access Deciding the Best Machine Learning Algorithm for Customer Attrition Prediction for a Telecommunication Company Omijeh Bourdillon O. 1, Abarugo Goodness Chidinma2 1(Electronic and Computer Engineering,University of Port-Harcourt, Rivers State, Nigeria. 2Centre for Information and Telecommunications Engineering (CITE),University of Port-Harcourt, Rivers State, Nigeria.) Corresponding Author: Abarugo Goodness Chidinma. ABSTRACT : Customers are so important in business that every firm should put great effort into retaining them. To achieve that with some measure of success, the firm needs to be able to predict the behaviour of their customers with respect to churn or attrition. There are many machine learning algorithms that may be used to predict attrition, but this paper considers only four of them. Logistic regression, k-nearest neighbour, random forest and XGBoost machine learning algorithms were applied in different ways to the dataset gotten from Kaggle in order to decide the best algorithm to suggest to the company for customer attrition prediction. Results showed that the logistic regression or random forest algorithm may be adopted by the telecom company to predict which of their customers may leave in the future based on their recall and precision scores as well as the AUC values of approximately 75%. The logistic regression algorithm gave metrics of 73% accuracy and 59% f1-score while the random forest algorithm yielded 70% accuracy and a 58% f1-score.
    [Show full text]
  • Machine Learning and Deep Learning Methods for Predictive Modelling from Raman Spectra in Bioprocessing
    Semion Rozov Machine Learning and Deep Learning methods for predictive modelling from Raman spectra in bioprocessing Master Thesis Institute for Chemical and Bioengineering Swiss Federal Institute of Technology (ETH) Zurich arXiv:2005.02935v1 [q-bio.QM] 6 May 2020 Supervision Dr. Michael Sokolov Dr. Fabian Feidl Prof. Dr. Gonzalo Guillen Gosalbez February 2020 Abstract In chemical processing and bioprocessing, conventional online sensors are limited to measure only basic process variables like pressure and temperature, pH, dissolved O and CO2 and viable cell density (VCD). The concentration of other chemical species is more difficult to measure, as it usu- ally requires an at-line or off-line approach. Such approaches are invasive and slow compared to on-line sensing. It is known that different molecules can be distinguished by their interaction with monochromatic light, producing different profiles for the resulting Raman spectrum, depending on the concentration. Given the availability of reference measurements for the target variable, regres- sion methods can be used to model the relationship between the profile of the Raman spectra and the concentration of the analyte. This work focused on pretreatment methods of Raman spectra for the facilitation of the regres- sion task using Machine Learning and Deep Learning methods, as well as the development of new regression models based on these methods. In the majority of cases, this allowed to outperform conventional Raman models in terms of pre- diction error and prediction robustness. 1 2 Contents Abstract 1 1 Introduction 11 1.1 Goals of the project . 12 2 Experimental Section and Setup 13 2.1 Evaluation criteria and model selection .
    [Show full text]
  • Predictive Modelling Applied to Propensity to Buy Personal Accidents Insurance Products
    Predictive Modelling Applied to Propensity to Buy Personal Accidents Insurance Products Esdras Christo Moura dos Santos Internship report presented as partial requirement for obtaining the Master’s degree in Advanced Analytics i 2017 Title: Predictive Models Applied to Propensity to Buy Personal Accidents Student: Esdras Christo Moura dos Santos Insurance Products MAA i i NOVA Information Management School Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa PREDICTIVE MODELLING APPLIED TO PROPENSITY TO BUY PERSONAL ACCIDENTS INSURANCE PRODUCTS by Esdras Christo Moura dos Santos Internship report presented as partial requirement for obtaining the Master’s degree in Advanced Analytics Advisor: Mauro Castelli ii February 2018 DEDICATION Dedicated to my beloved family. iii ACKNOWLEDGEMENTS I would like to express my gratitude to my supervisor, Professor Mauro Castelli of Information Management School of Universidade Nova de Lisboa for all the mentoring and assistance. I also want to show my gratitude for the data mining team at Ocidental, Magdalena Neate and Franklin Minang. I deeply appreciate all the guidance, patience and support during this project. iv ABSTRACT Predictive models have been largely used in organizational scenarios with the increasing popularity of machine learning. They play a fundamental role in the support of customer acquisition in marketing campaigns. This report describes the development of a propensity to buy model for personal accident insurance products. The entire process from business understanding to the deployment of the final model is analyzed with the objective of linking the theory to practice. KEYWORDS Predictive models; data mining; supervised learning; propensity to buy; logistic regression; decision trees; artificial neural networks; ensemble models.
    [Show full text]
  • 50 Years of Data Analysis from EDA to Predictive Modelling and Machine Learning
    50 Years of Data Analysis from EDA to predictive modelling and machine learning Gilbert Saporta CEDRIC- CNAM, 292 rue Saint Martin, F-75003 Paris [email protected] http://cedric.cnam.fr/~saporta Data analysis vs mathematical statistics • An international movement in reaction to the abuses of formalization • Let the data speak • Computerized statistics ASMDA 2017 2 • « He (Tukey) seems to identify statistics with the grotesque phenomenon generally known as mathematical statistics and find it necessary to replace statistics by data analysis » (Anscombe, 1967). John Wilder Tukey (1915-2000) ASMDA 2017 3 • « Statistics is not probability, under the name of mathematical statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice » (Benzécri, 1972) • « Data analysis is a tool to release from the gangue of the data the pure diamond of the true nature » Jean-Paul Benzécri (1932- ) ASMDA 2017 4 Japan, Netherlands, Canada, Italy… Chikio Hayashi (1918-2002) Jan de Leeuw (1945-) Shizuiko Nishisato (1935-) Carlo Lauro (1943-) ASMDA 2017 5 Meetings • Data Analysis and Informatics • ASMDA from 1981 from 1977 Edwin Diday Ludovic Lebart Jacques Janssen ASMDA 2017 6 Part 1 Exploratory data analysis « Data Analysis »: a collection of unsupervised methods for dimension reduction • « Factor » analysis • PCA, • CA, MCA • Cluster analysis • k-means partitioning • Hierarchical clustering ASMDA 2017 8 and came the time of syntheses: • All (factorial) methods are particular cases of: PCA canonical correlation analysis 1976 J.Douglas Carroll (1939 -2011) ASMDA 2017 9 Even more methods are particular cases of the maximum association principle: p MaxYj(,) Y X j1 M.Tenenhaus (1977), J.F.
    [Show full text]
  • The Development of a Predictive Model of On-Time High School Graduation in British Columbia
    The Development of a Predictive Model of On-Time High School Graduation in British Columbia May 1, 2019 Ross Finnie Eda Suleymanoglu Ashley Pullman Michael Dubois Table of Contents Executive Summary ........................................................................................................................ 1 1. Introduction .............................................................................................................................. 4 2. Literature Review .................................................................................................................... 5 3. Data .......................................................................................................................................... 7 3.1 Outcome Variables of Interest ............................................................................................ 8 3.2 Predictor Variables .............................................................................................................. 8 3.1 Sample Selection ................................................................................................................. 9 4. Methodology .......................................................................................................................... 10 4.1 Predictive Model ............................................................................................................... 10 4.2 Predictive Accuracy .........................................................................................................
    [Show full text]
  • Quantification of Predictive Uncertainty in Hydrological Modelling by Harnessing the Wisdom of the Crowd: Methodology Development and Investigation Using Toy Models
    Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models Georgia Papacharalampous1,*, Demetris Koutsoyiannis2, and Alberto Montanari3 1 Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 5, 157 80 Zographou, Greece; [email protected]; https://orcid.org/0000-0001-5446-954X 2 Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 5, 157 80 Zographou, Greece; [email protected]; https://orcid.org/0000-0002-6226-0241 3 Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, via del Risorgimento 2, 40136 Bologna, Italy; [email protected]; https://orcid.org/0000-0001-7428-0410 * Correspondence: [email protected], tel: +30 69474 98589 This is the accepted manuscript of an article published in Advances in Water Resources. Please cite the article as: Papacharalampous GA, Koutsoyiannis D, Montanari A (2020) Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models. Advances in Water Resources 136:103471. https://doi.org/10.1016/j.advwatres.2019.103471 Abstract: We introduce an ensemble learning post-processing methodology for probabilistic hydrological modelling. This methodology generates numerous point predictions by applying a single hydrological model, yet with different parameter values drawn from the respective simulated posterior distribution. We call these predictions “sister predictions”. Each sister prediction extending in the period of interest is converted into a probabilistic prediction using information about the hydrological model’s errors.
    [Show full text]
  • Exploration of Customer Churn Routes Using Machine Learning Probabilistic Models
    UNIVERSITAT POLITECNICA` DE CATALUNYA Exploration of Customer Churn Routes Using Machine Learning Probabilistic Models DOCTORAL THESIS Author: David L. Garc´ıa Advisors: Dra. Angela` Nebot and Dr. Alfredo Vellido Soft Computing Research Group Departament de Llenguatges i Sistemes Informatics` Universitat Politecnica` de Catalunya. BarcelonaTech Barcelona, 10th April 2014 A bird doesn’t sing because it has an answer, it sings because it has a song. Maya Angelou AMonica,´ Olivia, Pol i Jana 1 Acknowledgments Siempre he pensado que las cosas, en la vida, no ocurren por casualidad; son el conjunto de pequenas˜ (y grandes) aportaciones, casualidades, ideas, retos, azar, amor, exigencia y apoyo, animo´ y desanimo,´ es- fuerzo, inspiracion,´ reflexiones y cr´ıticas y, en definitiva, de todo aquello que nos configura como personas. Y la presente Tesis Doctoral no es una excepcion.´ Sin la aportacion´ en pequenas˜ dosis de estos ingredientes por parte de muchas personas esta Tesis no hubiera visto nunca la luz. A todos ellos mi publica´ gratitud. A los Dres. Angela` Nebot y Alfredo Vellido, en primer lugar por reconocer algun´ tipo de ’valor’ difer- encial en un perfil como el m´ıo y aceptarme en el Soft Computing Group como estudiante de doctorado. Y en segundo lugar, y mas´ importante, por ser el alma de este trabajo. Si os fijais´ observareis´ su presencia e ideas a lo largo de la Tesis Doctoral. Para ellos mi gratitud y admiracion.´ A mis clientes y colegas en el mundo empresarial, con los que he compartido infinitas horas y problemas y cuya exigencia ha puesto a prueba, cada d´ıa, el sentido y utilidad practica´ de las ideas y metodolog´ıas aqu´ı presentadas.
    [Show full text]