Response of Some Wheat (Triticum Aestivum L.) Cultivars to Irrigation Intervals Under Conditions of Kosti , White Nile State,Sudan
Total Page:16
File Type:pdf, Size:1020Kb
Response of Some Wheat (Triticum aestivum L.) Cultivars to Irrigation Intervals under Conditions of Kosti , White Nile State,Sudan By Yusuf Elamin Elmadani Akashah B.Sc. (Agric) Honours)،2008 University of Al Neelain A Dissertation Submitted to the University of Khartoum in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agriculture (Agricultural Engineering) Supervisor: Prof. Amir Bakheit Saeed Department of Agricultural Engineering Faculty of Agriculture University of Khartoum August 2016 1 DEDICATION I dedicate this work to: My beloved Parents: My wonderful mother Nemat and kind father Elamin, my sisters and my brothers. ii ACKNOWLEDGEMENTS Above all, my thanks and praise to almighty Allah who provided me with health, strength and patience to bring this work to its conclusion. My deep thanks, greatfullness and appreciation to my supervisor Prof.AmirBakheit Saeed For his valuable superintending, monitoring, encouragement, support and well divecting with broadness and ampleness through the period of this study. I would like to express my sincere gratitude to Dr. Bashir Mohammed Ahmed the Coordinator of Agricultural Engineering Research Program for his great help in all this research. My thanks also go to all the staff of Agricultural Engineering Research Program. Finally, thanks to my friends and colleagues at the Agricultural Research Corporation (ARC). iii Response of Some Wheat (Triticum aestivum L.) Cultivars to Irrigation Intervals under Conditions of Kosti, White Nile State,Sudan M.Sc. Agric. (Agricultural Engineering) Yusuf Elamin Elmadani Akashah Abstract: A field experiment was conducted during two successive winter seasons (2013/14 and 2014/15) at the Research Farm of the White Nile Research Station(WNRS), Kosti latitude 12 37N and longitude 31 54E, to investigate the effect of irrigation intervals on the growth , yield and water productivity of wheat ( Triticum sp.) under Kosti, White Nile State conditions in which the soil is deep , heavy cracking. The treatments considered were irrigation intervals and crop varieties. Three wheat varieties (Nebta,Bohean and Argeen) were grown on Novmber 22 under three different irrigation intervals (7days,10days and14days). Each treatment was replicated three times in a split-plot experimental design, in which the main plots were assigned to irrigation intervals and the sub-plots to wheat varieties. Seeding was done at the rate of 119 kg/ha, Fertilizers were broadcasted at the rate of 96-kg/ha for super phosphate before planting, and 96kg/ha for nitrogen prior to the second irrigation. Another similar dose of nitrogen was broadcasted before the fourth irrigation according to the Agricultural Research Corporation (ARC) recommendation. The parameters monitored were: plant height, dry matter weight, number of plants/m², days to 50% heading, days to maturity, number of spikes/m², number of grains/spike, 1000-grain weight, grain and straw yield and water productivity(kg/m³).The statistical analysis showed highly significant differences in the parameters studied due to irrigation intervals where the irrigation interval every 7days recorded higher values of grain yield (Argeen 2140,Bohean 2320 and Nebta 2510kg/ha) as compared to 14days interval(Argeen1320,Bohean 1510 and Nebta 1020 kg/ha) However, it was slightly different as compared to 10 days interval (Argeen1820,Bohean 2000 and Nebta 1550 kg/ha).In so far as the water productivity is concerned, 7 days interval recorded the highest value (75.9kg/ m³) While 10 day (75.7 kg/m³) and 14 day (70.1kg/ m³). Hence it can be concluded that Argeen and Bohean are the wheat varieties appropriate for the area under an irrigation interval of ten day . iv إستجابة بعض أصناف القمح لفترات الرى تحت الظروف البيئية لمنطقة كوستى، وﻻية النيل اﻻبيض ماجستير العلوم فى الهندسة الزراعية يوسف اﻷمين المدني عكاشة ألمستخلص:أجريت تجربة حقلية خﻻل شتاء موسمين متتابعين )3102/01 و 3101/01( في المزرعة التجريبية لمحطة بحوث النيل اﻷبيض )كوستى( خط طول 31 54،خط عرض 12 37 ، لدراسة تأثير فترات الري على ثﻻثة أصناف من القمح من حيث ألنمو واﻹنتاجية وكفاءة استخدام مياه الرى تحت ظروف وﻻية النيل اﻷبيض ذات التربة الطينية الثقيلة المتشققة . ألمعامﻻت شملت فترات الري وأصناف المحصول حيث زرعت ثﻻثة أصناف من ألقمح )أرجين، بوهين، نبته( فى 33 نوفمبر للموسمين المتتالين تحت ثﻻث فترات ري مختلفة) 7أيام، 01 أيام، 01 يوم(.كررت كل معاملة ثﻻث مرات باستخدام تصميم القطع المنشقة، حيث تمثل فترات الري المعاملة الرئسية و أصناف القمح المعاملة الفرعية ، الزراعة تمت بمعدل 001كيلو جرام /هكتار. تم نثر أﻷسمدة عند ألزراعة بمعدل 19 كيلو جرام/هكتار سوبرفوسفيت و19 كيلوجرام/هكتار من النيتروجين تم نثرها بنفس المعدل قبل الريتين الثانية و الرابعة تبعاً لتوصيات هيئة البحوث الزراعية . ألقياسات التي تمت دراستها شملت طول النبات، وزن المادة الجافة، عدد النباتات في المتر المربع، عدد اﻷيام للوصول إلى 11% إزهار، عدد اﻷيام حتى النضج، عدد السنابل في المتر المربع، عدد الحبوب في السنبلة، وزن 0111حبة، وزن الحبوب والعلف، ثم اﻻنتاجية بناء على كمية الماء المستخدم. اظهرت النتائج فروقا ً معنوية بين القياسات التي درست بالنسبة لفترات الري,حيث سجلت فترة الري كل 7أيام أعلى قيمة لﻻنتاجية )ارجين 3011, بوهين 3231,نبته 3101 كجم/هكتار( مقارنة بفترة ألري كل 01 يوم)ارجين 0231, بوهين 0101,نبته 0131 كجم/هكتار( وفروقات طفيفة عن الرى كل01 ايام)ارجين 0231, بوهين 3111,نبته 0111 كجم/هكتار(. من ناحية أخرى فان فترة الرى كل 7 ايام اعطت اعلى انتاج لوحدة المياه )75.9 كيلو جرام /متر³ ( بينما اعطت فترة الرى كل01 ايام )71.7 كيلو جرام /متر³ ( اما فترة ألري كل 01 يوم فقد اعطت )71.0كيلو جرام /متر³ ( . عليه يتضح ان ارجين وبوهين هما صنفا القمح اللذان يمكن اعتبارهما اﻻكثر مﻻئمة للزراعة فى المنطقة تحت فترة الرى عشرة ايام. v No Ccontents Page i Dedication i ii Acknowledgements ii iii English Abstract iii iv Arabic Abstract iv v Table of Contents v vi List of Figures viii 1 CHAPTER ONE INTRODUCTION 1 2 CHAPTER TWO Literature Review 4 2.1 Definition of irrigation 4 2.2 Modern Irrigation system 5 2.2.1 Sprinkler irrigation 5 2.2.2 Drip irrigation 5 2. 3 Surface irrigation systems 9 2. 3.1 Basin irrigation 12 2. 3.2 Border irrigation 13 2. 3.3 Furrow irrigation 14 2.4 Other Important processes in surface irrigation 16 2.4.1 Uncontrolled flooding 16 2.4.2 Waste water recovery and reuse 17 2.4.3 Inlet discharge control 17 2.5 Surface irrigation structures 19 2. .5.1 Diversion structures 19 vi 2.5.2 Conveyance, distribution and 21 Management structures 2.5.3 Field distribution systems 21 2.6 Subsurface irrigation 22 2.7 Phonology, yield and yield components in wheat 22 2.8 The effects of water stress on wheat 23 3 CHAPTER THREE MATERIALS AND METHODS 27 3.1 Experimental Site 27 3.2 The experimental design 27 3.3 Data collection procedure and calculation 30 3.3.1 Plant parameters 30 3.3.2 Water productivity 30 4 CHAPTER FOUR: RESULTS AND DISCUSSION 35 4.1 Plant growth and yield parameters 35 4.1.1 Plant height (cm) 36 4.1.2 Dry matter accumulation (g) 36 4.1.3 spikes formation 37 4.1.4 Grain yield (kg/ha) 37 4.1.5 Straw yield and biomass (kg/ha) 39 4.1.6 Number of plants /m2 40 4.1.7 Number of grains/spike 42 4.1.8 Thousand grain weight (g) 41 4.2 Water productivity 43 vii 5 CHAPTER FIVE: CONCLUSIONS AND 44 RECOMMENDATIONS 5.1 Conclusions 44 5.2 Recommendations 44 References 45 Appendices 51 viii Listof Figures No Figure Page 2.1 Time-space trajectory of water during a surface irrigation 10 2.2 Graded furrow irrigation system 15 2.3 Contour furrows 16 2.4 Typical turnout from a canal or lateral 20 3.1 Experimental lay out 28 3.2 Land preparation 29 3.3 Crop in early stages 29 3.4 Physiological maturity stage 31 3.5 Parameters measurements 31 4.1 Means of yield kg.ha Season (2013/14). 32 4.2 Means of yield kg.ha Season (2014/15). 33 4.3 Means of yield kg.ha season (2013/14, 2014/15). 33 4.4 Means of plant heights 34 4.5 Means of grain weight 36 4.6 Means of biomass 36 4.7 Means of straw weight 38 ix 4.8 Means of number of plant/ Meter 39 4.9 Means of number of grain/spike 40 4.10 Means of weight of grain/ Spike 41 4.11 Means of thousand seeds weight 42 4.12 Mean of Days to 50% mature 42 4.13 Means of moister depth 43 x CHAPTER ONE INTRODUCTION Irrigation has played and will continue to play a critical role in agricultural development. It is essential for crop production particularly in arid and semi-arid regions. It supplies the water needed for crop growth when rainfall is limited. In more humid climate, it can bridge dry periods and reduce agricultural risks. While the human food needs are increasing, the fresh water available for agriculture getting is limited. In surface irrigation systems, water moves over and across the land by gravity flow in order to wet it and to infiltrate into the soil. It is often called flood irrigation when the irrigation results in flooding or near flooding of the cultivated land. Historically, this has been the most common method of irrigating agricultural land (Walker, 2003). As the oldest and most common method of applying water to croplands, surface irrigation has evolved into an extensive array of configurations. Efforts to classify surface systems differ substantially, but generally include the following: (1) basin irrigation, (2) border irrigation, (3) furrow irrigation, and (4) wild flooding 1 Wheat (Triticum sp.) is the leading food crop in the world. It occupies over 30 % of the world area cropped to grains.