CD2AP in Mouse and Human Podocytes Controls a Proteolytic Program That Regulates Cytoskeletal Structure and Cellular Survival Andrey S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linkage Analysis of Candidate Loci for End-Stage Renal Disease Due to Diabetic Nephropathy
J Am Soc Nephrol 14: S195–S201, 2003 Linkage Analysis of Candidate Loci for End-Stage Renal Disease due to Diabetic Nephropathy SUDHA K. IYENGAR,*† KATHERINE A. FOX,*† MARLENE SCHACHERE,*† FAUZIA MANZOOR,*† MARY E. SLAUGHTER,*† ADRIAN M. COVIC,†‡ S. MOHAMMED ORLOFF,*† PATRICK S. HAYDEN,†‡ JANE M. OLSON,*† JEFFREY R. SCHELLING,†‡ and JOHN R. SEDOR†‡ Departments of *Epidemiology and Biostatistics, and ‡Medicine, Case Western Reserve University, and †Rammelkamp Center for Research and Education, MetroHealth Medical Center, Cleveland, Ohio. Abstract. Diabetic nephropathy (DN), a major cause of ESRD, ate in the final linkage analysis. To date, we have collected 212 is undoubtedly multifactorial and is caused by environmental sib pairs from 46 CA and 50 AA families. The average age of and genetic factors. To identify a genetic basis for DN suscep- diabetes onset was 46.8 yr versus 36.2 yr for CA and 39.5 yr tibility, we are collecting multiplex DN families in the Cauca- versus 40.2 yr for AA, in males versus females respectively. sian (CA) and African-American (AA) populations for whole Genotyping data were available for 106 sib pairs (43 CA, 63 genome scanning and candidate gene analysis. A candidate AA) from 27 CA (44% male probands) and 38 AA families gene search of diabetic sibs discordantly affected, concordantly (43% male probands). Average AA and CA sibship size was affected and concordantly unaffected for DN was performed 2.73. Singlepoint and multipoint linkage analyses indicate that with microsatellite markers in genomic regions suspected to marker D10S1654 on chromosome 10p is potentially linked to harbor nephropathy susceptibility loci. -
Expression Pattern of CD2AP in the Intact and Collaterally Sprouting Nervous System
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2011 Expression pattern of CD2AP in the intact and collaterally sprouting nervous system. Sarah Elizabeth Claypool Couch 1987- University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Couch, Sarah Elizabeth Claypool 1987-, "Expression pattern of CD2AP in the intact and collaterally sprouting nervous system." (2011). Electronic Theses and Dissertations. Paper 279. https://doi.org/10.18297/etd/279 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. EXPRESSION PATTERN OF CD2AP IN THE INTACT AND COLLATERALL Y SPROUTING NERVOUS SYSTEM By Sarah Elizabeth Claypool Couch B.S., Centre College, 2009 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Fulfillment of the Requirements for the Degree of Master of Science Department of Anatomical Sciences and Neurobiology University of Louisville Louisville, Kentucky August 2011 EXPRESSION PATTERN OF CD2AP IN THE INTACT AND COLLA TERALL Y SPROUTING NERVOUS SYSTEM By Sarah Elizabeth Claypool Couch B.S., Centre College, 2009 A Thesis Approved on July 19,2011 By the following Thesis Committee: Jeffrey Petruska, Ph.D. Theo Hagg, M.D., Ph.D. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Region-Specific Transcriptional Changes Following the Three
Molecular Psychiatry (2007) 12, 167–189 & 2007 Nature Publishing Group All rights reserved 1359-4184/07 $30.00 www.nature.com/mp ORIGINAL ARTICLE Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine B Conti1, R Maier2, AM Barr1,3, MC Morale1,4,XLu1, PP Sanna1, G Bilbe2, D Hoyer2 and T Bartfai1 1Molecular and Integrative Neuroscience Department, The Harold L Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA, USA and 2Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland The significant proportion of depressed patients that are resistant to monoaminergic drug therapy and the slow onset of therapeutic effects of the selective serotonin reuptake inhibitors (SSRIs)/serotonin/noradrenaline reuptake inhibitors (SNRIs) are two major reasons for the sustained search for new antidepressants. In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset antidepressant. Each of these antidepressant treatments was applied with the same regimen known to have clinical efficacy: 2 days of ECT (four sessions per day), 24 h of SD, and 14 days of daily treatment of FLX, respectively. Transcriptional changes were evaluated on RNA extracted from seven different brain regions using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization or autoradiography for selected genes. -
Expression and Subcellular Distribution of Novel Glomerulus-Associated Proteins Dendrin, Ehd3, Sh2d4a, Plekhh2, and 2310066E14rik
Basic Science Articles Expression and Subcellular Distribution of Novel Glomerulus-Associated Proteins Dendrin, Ehd3, Sh2d4a, Plekhh2, and 2310066E14Rik Jaakko Patrakka,*† Zhijie Xiao,* Masatoshi Nukui,* Minoru Takemoto,* Liqun He,* Asmundur Oddsson,* Ljubica Perisic,* Anne Kaukinen,‡ Cristina Al-Khalili Szigyarto,§ ʈ Mathias Uhle´n,§ Hannu Jalanko,‡ Christer Betsholtz,* and Karl Tryggvason* ʈ *Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, and Department of Medicine, Karolinska Institute, and §Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and †Electron Microscopy Unit, Institute of Biotechnology, and ‡Hospital for Children and Adolescents and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland The glomerular capillary tuft is a highly specialized microcapillary that is dedicated to function as a sophisticated molecular sieve. The glomerulus filter has a unique molecular composition, and several essential glomerular proteins are expressed in the kidney exclusively by glomerular podocytes. A catalog of >300 glomerulus-upregulated transcripts that were identified using expressed sequence tag profiling and microarray analysis was published recently. This study characterized the expression profile of five glomerulus-upregulated transcripts/proteins (ehd3, dendrin, sh2d4a, plekhh2, and 2310066E14Rik) in detail. The expression pattern of these novel glomerular transcripts in various mouse tissues was studied using reverse transcriptase–PCR, Northern blotting, and in -
NPHS2 (Podocin) Mutations in Nephrotic Syndrome
0031-3998/05/5705-0054R PEDIATRIC RESEARCH Vol. 57, No. 5, Pt 2, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. NPHS2 (Podocin) Mutations in Nephrotic Syndrome. Clinical Spectrum and Fine Mechanisms GIANLUCA CARIDI, FRANCESCO PERFUMO, AND GIAN MARCO GHIGGERI Laboratory on Pathophysiology of Uremia [G.C., G.M.C.], and Renal Unit [F.P., G.M.C.], Istituto Giannina Gaslini, 16148 Genova, Italy. ABSTRACT Nephrotic syndrome (NS) is the most frequent cause of iments with the common R229Q polymorphism demonstrated an proteinuria in children and is emerging as a leading cause of altered interaction with nephrin that affects the stability of the uremia. Molecular studies in families with recessive NS have led functional unit. Overall, data are here presented that underscore to the discovery of specialized molecules endowed in podocytes a major role of inherited defects of NPHS2 in NS in children that play a role in proteinuria. This review focalizes the key (including a relevant impact in sporadic cases) and give the position of podocin (NPHS2 gene) in this rapidly evolving field functional rationale for the association. A practical compendium and furnishes a compendium to those involved in clinics and is also given to clinicians involved in the management of NS that genetics of NS. Screening for NPHS2 mutations have been done should modify the classic therapeutic approach. (Pediatr Res 57: in sporadic NS and familial cases with recessive inheritance, 54R–61R, 2005) documenting a mutation detection rate of 45–55% in families and 8–20% in sporadic NS according to the different groups and considering all the clinical phenotypes. -
Stargazin and Other Transmembrane AMPA Receptor Regulating Proteins Interact with Synaptic Scaffolding Protein MAGI-2 in Brain
The Journal of Neuroscience, July 26, 2006 • 26(30):7875–7884 • 7875 Cellular/Molecular Stargazin and Other Transmembrane AMPA Receptor Regulating Proteins Interact with Synaptic Scaffolding Protein MAGI-2 in Brain Fang Deng, Maureen G. Price, Caleb F. Davis, Mayra Mori, and Daniel L. Burgess Department of Neurology, Baylor College of Medicine, Houston, Texas 77030 The spatial coordination of neurotransmitter receptors with other postsynaptic signaling and structural molecules is regulated by a diverse array of cell-specific scaffolding proteins. The synaptic trafficking of AMPA receptors by the stargazin protein in some neurons, for example, depends on specific interactions between the C terminus of stargazin and the PDZ [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] domains of membrane-associated guanylate kinase scaffolding proteins PSD-93 or PSD-95. Stargazin [Cacng2 (Ca 2ϩ channel ␥2 subunit)] is one of four closely related proteins recently categorized as transmembrane AMPA receptor regulating proteins (TARPs) that appear to share similar functions but exhibit distinct expression patterns in the CNS. We used yeast two-hybrid screeningtoidentifyMAGI-2(membraneassociatedguanylatekinase,WWandPDZdomaincontaining2)asanovelcandidateinteractor with the cytoplasmic C termini of the TARPs. MAGI-2 [also known as S-SCAM (synaptic scaffolding molecule)] is a multi-PDZ domain scaffolding protein that interacts with several different ligands in brain, including PTEN (phosphatase and tensin homolog), dasm1 (dendrite arborization and synapse maturation 1), dendrin, axin, - and ␦-catenin, neuroligin, hyperpolarization-activated cation channels, 1-adrenergic receptors, and NMDA receptors. We confirmed that MAGI-2 coimmunoprecipitated with stargazin in vivo from mouse cerebral cortex and used in vitro assays to localize the interaction to the C-terminal -TTPV amino acid motif of stargazin and the PDZ1, PDZ3, and PDZ5 domains of MAGI-2. -
A Novel PLEKHA7 Interactor at Adherens Junctions
Thesis PDZD11: a novel PLEKHA7 interactor at adherens junctions GUERRERA, Diego Abstract PLEKHA7 is a recently identified protein of the AJ that has been involved by genetic and genomic studies in the regulation of miRNA signaling and cardiac contractility, hypertension and glaucoma. However, the molecular mechanisms behind PLEKHA7 involvement in tissue physiology and pathology remain unknown. In my thesis I report novel results which uncover PLEKHA7 functions in epithelial and endothelial cells, through the identification of a novel molecular interactor of PLEKHA7, PDZD11, by yeast two-hybrid screening, mass spectrometry, co-immunoprecipitation and pulldown assays. I dissected the structural basis of their interaction, showing that the WW domain of PLEKHA7 binds to the N-terminal region of PDZD11; this interaction mediates the junctional recruitment of PDZD11, identifying PDZD11 as a novel AJ protein. I provided evidence that PDZD11 forms a complex with nectins at AJ, its PDZ domain binds to the PDZ-binding motif of nectins. PDZD11 stabilizes nectins promoting the early steps of junction assembly. Reference GUERRERA, Diego. PDZD11: a novel PLEKHA7 interactor at adherens junctions. Thèse de doctorat : Univ. Genève, 2016, no. Sc. 4962 URN : urn:nbn:ch:unige-877543 DOI : 10.13097/archive-ouverte/unige:87754 Available at: http://archive-ouverte.unige.ch/unige:87754 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITE DE GENÈVE FACULTE DES SCIENCES Section de Biologie Prof. Sandra Citi Département de Biologie Cellulaire PDZD11: a novel PLEKHA7 interactor at adherens junctions THÈSE Présentée à la Faculté des sciences de l’Université de Genève Pour obtenir le grade de Doctor ès science, mention Biologie par DIEGO GUERRERA de Benevento (Italie) Thèse N° 4962 GENÈVE Atelier d'impression Repromail 2016 1 Table of contents RÉSUMÉ .................................................................................................................. -
The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity
The Journal of Neuroscience, April 13, 2016 • 36(15):4259–4275 • 4259 Cellular/Molecular The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity Benjamin J. Harrison,1,2,3 Gayathri Venkat,1,2 James L. Lamb,4 Tom H. Hutson,5 XCassa Drury,6 Kristofer K. Rau,7 Mary Barlett Bunge,8,9 Lorne M. Mendell,9,10 XFred H. Gage,9,11 Richard D. Johnson,12,13 Caitlin E. Hill,14,15 Eric C. Rouchka,3,16 XLawrence D.F. Moon,5 and XJeffrey C. Petruska1,2,17 1Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202, 2Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky 40292, 3Kentucky Biomedical Research Infrastructure Network, University of Louisville, Louisville, Kentucky 40292, 4University of Louisville School of Medicine, Louisville, Kentucky 40292, 5Wolfson Centre for Age Related Diseases, King’s College, London SE1 1UL, United Kingdom, 6DuPont Manual High School, Louisville, Kentucky 40205, 7Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, Kentucky 40202, 8Miami Project to Cure Paralysis, Department of Neurological Surgery and Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, 9Christopher and Dana Reeve Foundation International Consortium on Spinal Cord Injury Research, Short Hills, New Jersey 07078, 10Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, 11Laboratory of Genetics, The Salk Institute, La Jolla, California -
Synaptic Plasticity and Translation Initiation Eric Klann,1,2,3 Marcia D
Downloaded from learnmem.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Review Synaptic Plasticity and Translation Initiation Eric Klann,1,2,3 Marcia D. Antion,2 Jessica L. Banko,1 and Lingfei Hou1 1Departments of Molecular Physiology and Biophysics and 2Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is likely to be intimately involved in modulating synaptic strength. Our understanding of the translation-initiation process has expanded greatly in recent years. In this review, we discuss various aspects of translation initiation, as well as signaling pathways that might be involved in coupling neurotransmitter and neurotrophin receptors to the translation machinery during various forms of synaptic plasticity. It is thought that the cellular changes that underlie various forms 2000, 2001). In hippocampal area CA1, mGluR-dependent LTD of short-term synaptic plasticity involve covalent modifications can be blocked by translation inhibitors and, similar to BDNF- of pre-existing proteins and are protein-synthesis independent. induced potentiation, persists even when cell bodies are ex- In contrast, it is clear that long-lasting forms of synaptic plastic- cised from their dendrites (Huber et al. 2000). Thus, the protein ity require macromolecular synthesis. For example, long-lasting, synthetic machinery and the mRNA(s) necessary for the induc- late phase long-term potentiation (L-LTP) in the hippocampus tion of mGluR-dependent LTD are present in postsynaptic den- requires new protein synthesis (Frey and Morris 1997; Nguyen et drites. -
Mouse Cd2ap Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cd2ap Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cd2ap conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cd2ap gene (NCBI Reference Sequence: NM_009847 ; Ensembl: ENSMUSG00000061665 ) is located on Mouse chromosome 17. 18 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 18 (Transcript: ENSMUST00000024709). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cd2ap gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-340J5 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a targeted null mutation exhibit impaired immune function and die at 6 to 7 weeks of age from kidney failure associated with podocyte defects and mesangial cell hyperplasia. Heterozygotes develop glomerular changes around 9 months. Exon 4 starts from about 16.75% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 6523 bp, and the size of intron 4 for 3'-loxP site insertion: 4416 bp. The size of effective cKO region: ~601 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 18 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cd2ap Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
Nuclear Relocation of the Nephrin and CD2AP-Binding Protein Dendrin Promotes Apoptosis of Podocytes
Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes Katsuhiko Asanuma*, Kirk Nicholas Campbell, Kwanghee Kim, Christian Faul, and Peter Mundel† Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 Edited by Marilyn Gist Farquhar, University of California at San Diego School of Medicine, La Jolla, CA, and approved April 28, 2007 (received for review February 1, 2007) Kidney podocytes and their slit diaphragms (SDs) form the final Results barrier to urinary protein loss. There is mounting evidence that SD Dendrin Is a Component of the SD Complex. Dendrin contains two proteins also participate in intracellular signaling pathways. The SD putative nuclear localization signals (NLSs) and three PPXY protein nephrin serves as a component of a signaling complex that motifs that are preserved among human, rat, and mouse (Fig. directly links podocyte junctional integrity to actin cytoskeletal 1a). To explore the renal expression of dendrin, we generated dynamics. Another SD protein, CD2-associated protein (CD2AP), is and affinity-purified a peptide antibody against the C terminus an adaptor molecule involved in podocyte homeostasis that can of mouse dendrin. This antibody detected the previously de- repress proapoptotic TGF- signaling in podocytes. Here we show scribed 89-kDa and 81-kDa isoforms of dendrin in the brain but that dendrin, a protein originally identified in telencephalic den- only the 81-kDa isoform in isolated glomeruli (Fig. 1b). By drites, is a constituent of the SD complex, where it directly binds immunofluorescence microscopy of adult mouse kidney, dendrin to nephrin and CD2AP. In experimental glomerulonephritis, den- was detected exclusively in glomeruli (Fig.