15.401

15.40115.401 FinanceFinance TheoryTheory MIT Sloan MBA Program

Andrew W. Lo Harris & Harris Group Professor, MIT Sloan School

Lectures 10–11: Options

© 2007–2008 by Andrew W. Lo Critical Concepts 15.401 ƒ Motivation ƒ Payoff Diagrams ƒ Payoff Tables ƒ Strategies ƒ Other Option-Like Securities ƒ of Options ƒ A Brief History of Option-Pricing Theory ƒ Extensions and Qualifications

Readings: ƒ Brealey, Myers, and Allen Chapters 27

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 2 Motivation 15.401 : Claim Whose Payoff is a Function of Another's ƒ Warrants, Options ƒ Calls vs. Puts ƒ American vs. European ƒ Terms: K, Time to Maturity τ

ƒ At Maturity T, payoff

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 3 Motivation 15.401 Put Options As Insurance

ƒ Differences – Early – Marketability – Dividends

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 4 Payoff Diagrams 15.401

Call Option:

12

10

8

6

4 Payoff / profit, $ 2

Stock price 0 10 15 20 25 30 -2

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 5 Payoff Diagrams 15.401 Return vs. Return

133%

100%

67%

33%

0% 30 34 38 42 46 50 54 58 62 66 70 -33%

-67%

-100%

-133%

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 6 Payoff Diagrams 15.401

Put Option:

12

10

8 , $ t

i 6 f o r 4 ff / p o y

a 2 P Stock price 0 10 15 20 25 30 -2

-4

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 7 Payoff Diagrams 15.401

25 25

20 20

15 Call 15 Long Put

10 10

5 5

0 0 30 40 50 60 70 30 40 50 60 70 -5 -5 Stock price Stock price 5 5 Stock price Stock price 0 0 30 40 50 60 70 30 40 50 60 70 -5 -5 -10 Call -10 Short Put -15 -15

-20 -20

-25 -25

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 8 Payoff Tables 15.401 Stock Price = S, Strike Price = X

Call option (price = C) if S < X if S = X if S > X Payoff 0 0 S – X Profit –C –C S – X – C

Put option (price = P) if S < X if S = X if S > X Payoff X – S 0 0 Profit X – S – P –P –P

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 9 Option Strategies 15.401 Trading strategies Options can be combined in various ways to create an unlimited number of payoff profiles.

Examples ƒ Buy a stock and a put ƒ Buy a call with one strike price and sell a call with another ƒ Buy a call and a put with the same strike price

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 10 Option Strategies 15.401

Stock + Put

70 25 Payoff Payoff 65 20 60 55 Buy stock 15 Buy a put 50 45 10 40 5 35 30 0 30 40 50 60 70 30 40 50 60 70 Stock price Stock price

70 Payoff 65 60 55 50 45 40 Stock + put 35 30 30 40 50 60 70 Stock price

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 11 Option Strategies 15.401

Call1  Call2

25 25 Payoff Payoff 20 20 15 15 10 Buy call with 10 Write call with 5 X = 50 5 X = 60 0 0 -5 30 40 50 60 70 -5 30 40 50 60 70 -10 Stock price -10 Stock price -15 -15 -20 -20

20 Payoff 16

12 Call1 – Call2

8

4

0 30 40 50 60 70 Stock price

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 12 Option Strategies 15.401

Call + Put

25 25 Payoff Payoff 20 20

15 15 Buy call with Buy put with 10 X = 50 10 X = 50 5 5

0 0 30 40 50 60 70 30 40 50 60 70 -5 -5 Stock price Stock price -10 -10

25 Payoff 20

15 Call + Put 10

5

0 30 40 50 60 70 -5 Stock price -10

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 13 Other Option-Like Securities 15.401 Corporate Liabilities:

ƒ Equity: hold call, or protected levered put ƒ : issue put and (riskless) lending ƒ Quantifies Compensation Incentive Problems: – Biased towards higher – Can overwhelm NPV considerations – Example: leveraged equity

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 14 Other Option-Like Securities 15.401 Other Examples of Derivative Securities: ƒ Asian or “Look Back” Options ƒ Callables, Convertibles ƒ Futures, Forwards ƒ Swaps, Caps, Floors ƒ Real Investment Opportunities ƒ Patents ƒ Tenure ƒ etc.

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 15 15.401

Binomial Option-Pricing Model of Cox, Ross, and Rubinstein (1979): ƒ Consider One-Period Call Option On Stock XYZ

ƒ Current Stock Price S0 ƒ Strike Price K − ƒ Option Expires Tomorrow, C1= Max [S1 K , 0]

ƒ What Is Today’s Option Price C0?

01

− S0 , C0 = ??? S1 , C1= Max [S1 K , 0]

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 16 Valuation of Options 15.401

→ Suppose S0 S1 Is A Bernoulli Trial:

p uS0 u > d S1 − 1 p dS0 − p Max [ uS0 K , 0 ] == Cu

C1 − − 1 p Max [ dS0 K , 0 ] == Cd

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 17 Valuation of Options 15.401

⋅ Now What Should C0 = f ( ) Depend On?

ƒ Parameters: S0 , K , u , d , p , r Consider Portfolio of and Bonds Today: ƒ ∆ Shares of Stock, $B of Bonds ∆ ƒ Total Cost Today: V0 == S0 + B

ƒ Payoff V1 Tomorrow:

∆ p uS0 + rB

V1 − ∆ 1 p dS0 + rB

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 18 Valuation of Options 15.401

Now Choose ∆ and B So That:

∆ p uS0 + rB= Cu ∆* = (C − C )/(u − d)S V ⇒ u d 0 1 − − − ∆ B* = (uCd dCu)/(u d)r 1 p dS0 + rB= Cd

Then It Must Follow That:

1 r − d u − r C = V = S ∆* + B* = C + C 0 0 0 r u − d u u − d d

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 19 Valuation of Options 15.401

Suppose C0 > V0 − ƒ Today: Sell C0 , Buy V0 , Receive C0 V0 > 0

ƒ Tomorrow: Owe C1, But V1 Is Equal To C1!

Suppose C0 < V0 − ƒ Today: Buy C0 , Sell V0 , Receive V0 C0 > 0

ƒ Tomorrow: Owe V1, But C1 Is Equal To V1!

C0 = V0 , Otherwise Arbitrage Exists

1 r − d u − r C = V = S ∆* + B* = C + C 0 0 0 r u − d u u − d d

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 20 Valuation of Options 15.401 Note That p Does Not Appear Anywhere! ƒ Can disagree on p, but must agree on option price ƒ If price violates this relation, arbitrage! ƒ A multi-period generalization exists:

ƒ Continuous-time/continuous-state version (Black-Scholes/Merton):

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 21 A Brief History of Option-Pricing Theory 15.401 Earliest Model of Prices: ƒ Notion of “fair” game ƒ The martingale ƒ Cardano’s (c.1565) Liber De Ludo Aleae:

The most fundamental principle of all in is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box, and of the die itself. To the extent to which you depart from that equality, if it is in your opponent's favor, you are a fool, and if in your own, you are unjust.

ƒ Precursor of the Random Walk Hypothesis

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 22 A Brief History of Option-Pricing Theory 15.401 (1870–1946): ƒ Théorie de la Spéculation (1900) ƒ First mathematical model of Brownian motion ƒ Modelled prices on Paris Bourse

ƒ Poincaré’s evaluation of Bachelier: The manner in which the candidate obtains the law of Gauss is most original, and all the more interesting as the same reasoning might, with a few changes,be extended to the theory of errors. He develops this in a chapter which might at first seem strange, for he titles it ``Radiation of Probability''. In effect, the author resorts to a comparison with the analytical theory of the propagation of heat. A little reflection shows that the analogy is real and the comparison legitimate. Fourier's reasoning is applicable almost without change to this problem, which is so different from that for which it had been created. It is regrettable that [the author] did not develop this part of his thesis further.

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 23 A Brief History of Option-Pricing Theory 15.401 Kruizenga (1956): ƒ MIT Ph.D. Student (Samuelson) ƒ “Put and Call Options: A Theoretical and Analysis”

Sprenkle (1961): ƒ Yale Ph.D. student (Okun, Tobin) ƒ “Warrant Prices As Indicators of Expectations and Preferences”

− What Is The “Value” of Max [ ST K , 0 ]?

ƒ Assume probability law for ST − ƒ Calculate Et [ Max [ ST K , 0 ] ] ƒ But what is its price? ƒ Do risk preferences matter?

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 24 A Brief History of Option-Pricing Theory 15.401 Samuelson (1965): ƒ “Rational Theory of Warrant Pricing” ƒ “Appendix: A Free Boundary Problem for the Arising from a Problem in Mathematical Economics”, H.P. McKean

Samuelson and Merton (1969): ƒ “A Complete Model of Warrant Pricing that Maximizes Utility” ƒ Uses preferences to value expected payoff

Black and Scholes (1973): ƒ Construct portfolio of options and stock ƒ Eliminate market risk (appeal to CAPM) ƒ Remaining risk is inconsequential (idiosyncratic) ƒ Expected return given by CAPM (PDE)

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 25 A Brief History of Option-Pricing Theory 15.401 Merton (1973): ƒ Use continuous-time framework – Construct portfolio of options and stock – Eliminate market risk (dynamically) – Eliminate idiosyncratic risk (dynamically) – Zero payoff at maturity – No risk, zero payoff ⇒ zero cost (otherwise arbitrage) – Same PDE ƒ More importantly, a “production process” for derivatives! ƒ Formed the basis of and three distinct industries: – Listed options – OTC structured products – derivatives

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 26 A Brief History of Option-Pricing Theory 15.401 The Rest Is Financial History:

Photographs removed due to copyright restrictions.

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 27 Extensions and Qualifications 15.401

ƒ The derivatives pricing literature is HUGE ƒ The mathematical tools involved can be quite challenging ƒ Recent areas of innovation include: – Empirical methods in estimating option pricings – Non-parametric option-pricing models – Models of credit derivatives – Structured products with funds as the – New methods for managing the of derivatives – Quasi-Monte-Carlo methods for simulation estimators ƒ Computational demands can be quite significant ƒ This is considered “rocket science”

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 28 Key Points 15.401

ƒ Options have nonlinear payoffs, as diagrams show ƒ Some options can be viewed as insurance contracts ƒ Option strategies allow to take more sophisticated bets ƒ Valuation is typically derived via arbitrage arguments (e.g., binomial) ƒ Option-pricing models have a long and illustrious history

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 29 Additional References 15.401

ƒ Bachelier, L, 1900, “Théorie de la Spéculation”, Annales de l'Ecole Normale Supérieure 3 (Paris, Gauthier-Villars). ƒ Black, F., 1989, “How We Came Up with the Option Formula”, Journal of Portfolio Management 15, 4–8. ƒ Bernstein, P., 1993, Capital Ideas. New York: Free Press. ƒ Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy 81, 637–659. ƒ Kruizenga, R., 1956, Put and Call Options: A Theoretical and Market Analysis, unpublished Ph.D. dissertation, MIT. ƒ Merton, R., 1973, “Rational Theory of Option Pricing”, Bell Journal of Economics and Management Science 4, 141–183. ƒ Samuelson, P., 1965, “Rational Theory of Warrant Pricing”, Industrial Management Review 6, 13–31. ƒ Samuelson, P. and R. Merton, 1969, “A Complete Model of Warrant Pricing That Maximizes Utility”, Industrial Management Review 10, 17–46. ƒ Sprenkle, C., 1961, “Warrant Prices As Indicators of Expectations and Preferences”, Yale Economic Essays 1, 178–231.

© 2007–2008 by Andrew W. Lo Lecture 10–11: Options Slide 30 MIT OpenCourseWare http://ocw.mit.edu

15.401 Finance Theory I Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.