Chapter 7 the Galaxy: Its Structure and Content
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Young Nuclear Stellar Disc in the SB0 Galaxy NGC 1023
MNRAS 457, 1198–1207 (2016) doi:10.1093/mnras/stv2864 The young nuclear stellar disc in the SB0 galaxy NGC 1023 E. M. Corsini,1,2‹ L. Morelli,1,2 N. Pastorello,3 E. Dalla Bonta,` 1,2 A. Pizzella1,2 and E. Portaluri2 1Dipartimento di Fisica e Astronomia ‘G. Galilei’, Universita` di Padova, vicolo dell’Osservatorio 3, I-35122 Padova, Italy 2INAF–Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Accepted 2015 December 3. Received 2015 November 5; in original form 2015 September 11 Downloaded from ABSTRACT Small kinematically decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the http://mnras.oxfordjournals.org/ structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre, is rejected. -
Relaxation Time
Today in Astronomy 142: the Milky Way’s disk More on stars as a gas: stellar relaxation time, equilibrium Differential rotation of the stars in the disk The local standard of rest Rotation curves and the distribution of mass The rotation curve of the Galaxy Figure: spiral structure in the first Galactic quadrant, deduced from CO observations. (Clemens, Sanders, Scoville 1988) 21 March 2013 Astronomy 142, Spring 2013 1 Stellar encounters: relaxation time of a stellar cluster In order to behave like a gas, as we assumed last time, stars have to collide elastically enough times for their random kinetic energy to be shared in a thermal fashion. But stellar encounters, even distant ones, are rare on human time scales. How long does it take a cluster of stars to thermalize? One characteristic time: the time between stellar elastic encounters, called the relaxation time. If a gravitationally bound cluster is a lot older than its relaxation time, then the stars will be describable as a gas (the star system has temperature, pressure, etc.). 21 March 2013 Astronomy 142, Spring 2013 2 Stellar encounters: relaxation time of a stellar cluster (continued) Suppose a star has a gravitational “sphere of influence” with radius r (>>R, the radius of the star), and moves at speed v between encounters, with its sphere of influence sweeping out a cylinder as it does: v V= π r2 vt r vt If the number density of stars (stars per unit volume) is n, then there will be exactly one star in the cylinder if 2 1 nV= nπ r vtcc =⇒=1 t Relaxation time nrvπ 2 21 March 2013 Astronomy 142, Spring 2013 3 Stellar encounters: relaxation time of a stellar cluster (continued) What is the appropriate radius, r? Choose that for which the gravitational potential energy is equal in magnitude to the average stellar kinetic energy. -
In-Class Worksheet on the Galaxy
Ay 20 / Fall Term 2014-2015 Hillenbrand In-Class Worksheet on The Galaxy Today is another collaborative learning day. As earlier in the term when working on blackbody radiation, divide yourselves into groups of 2-3 people. Then find a broad space at the white boards around the room. Work through the logic of the following two topics. Oort Constants. From the vantage point of the Sun within the plane of the Galaxy, we have managed to infer its structure by observing line-of-sight velocities as a function of galactic longitude. Let’s see why this works by considering basic geometry and observables. • Begin by drawing a picture. Consider the Sun at a distance Ro from the center of the Galaxy (a.k.a. the GC) on a circular orbit with velocity θ(Ro) = θo. Draw several concentric circles interior to the Sun’s orbit that represent the circular orbits of other stars or gas. Now consider some line of sight at a longitude l from the direction of the GC, that intersects one of your concentric circles at only one point. The circular velocity of an object on that (also circular) orbit at galactocentric distance R is θ(R); the direction of θ(R) forms an angle α with respect to the line of sight. You should also label the components of θ(R): they are vr along the line-of-sight, and vt tangential to the line-of-sight. If you need some assistance, Figure 18.14 of C/O shows the desired result. What we are aiming to do is derive formulae for vr and vt, which in principle are measureable, as a function of the distance d from us, the galactic longitude l, and some constants. -
Search for Gas Accretion Imprints in Voids: I. Sample Selection and Results for NGC 428
MNRAS 000,1{13 (2018) Preprint 1 November 2018 Compiled using MNRAS LATEX style file v3.0 Search for gas accretion imprints in voids: I. Sample selection and results for NGC 428 Evgeniya S. Egorova,1;2? Alexei V. Moiseev,1;2;3 Oleg V. Egorov1;2 1 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, Moscow 119234, Russia 2 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz 369167, Russia 3 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow 117997, Russia Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the first results of a project aimed at searching for gas accretion events and interactions between late-type galaxies in the void environment. The project is based on long-slit spectroscopic and scanning Fabry-Perot interferometer observations per- formed with the SCORPIO and SCORPIO-2 multimode instruments at the Russian 6-m telescope, as well as archival multiwavelength photometric data. In the first paper of the series we describe the project and present a sample of 18 void galaxies with oxy- gen abundances that fall below the reference `metallicity-luminosity' relation, or with possible signs of recent external accretion in their optical morphology. To demonstrate our approach, we considered the brightest sample galaxy NGC 428, a late-type barred spiral with several morphological peculiarities. We analysed the radial metallicity dis- tribution, the ionized gas line-of-sight velocity and velocity dispersion maps together with WISE and SDSS images. Despite its very perturbed morphology, the velocity field of ionized gas in NGC 428 is well described by pure circular rotation in a thin flat disc with streaming motions in the central bar. -
A Gas Cloud on Its Way Towards the Super-Massive Black Hole in the Galactic Centre
1 A gas cloud on its way towards the super-massive black hole in the Galactic Centre 1 1,2 1 3 4 4,1 5 S.Gillessen , R.Genzel , T.K.Fritz , E.Quataert , C.Alig , A.Burkert , J.Cuadra , F.Eisenhauer1, O.Pfuhl1, K.Dodds-Eden1, C.F.Gammie6 & T.Ott1 1Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching, Germany ( [email protected], [email protected] ) 2Department of Physics, Le Conte Hall, University of California, 94720 Berkeley, USA 3Department of Astronomy, University of California, 94720 Berkeley, USA 4Universitätssternwarte der Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München, Germany 5Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile 6Center for Theoretical Astrophysics, Astronomy and Physics Departments, University of Illinois at Urbana-Champaign, 1002 West Green St., Urbana, IL 61801, USA Measurements of stellar orbits1-3 provide compelling evidence4,5 that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares6,7, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low3,8. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud’s orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. -
Exploring the Mass Assembly of the Early-Type Disc Galaxy NGC 3115 with MUSE? A
A&A 591, A143 (2016) Astronomy DOI: 10.1051/0004-6361/201628743 & c ESO 2016 Astrophysics Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE? A. Guérou1; 2; 3, E. Emsellem3; 4, D. Krajnovic´5, R. M. McDermid6; 7, T. Contini1; 2, and P.M. Weilbacher5 1 IRAP, Institut de Recherche en Astrophysique et Planétologie, CNRS, 14, avenue Édouard Belin, 31400 Toulouse, France 2 Université de Toulouse, UPS-OMP, Toulouse, France 3 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany e-mail: [email protected] 4 Universite Lyon 1, Observatoire de Lyon, Centre de Recherche Astrophysique de Lyon and École Normale Supérieure de Lyon, 9 avenue Charles André, 69230 Saint-Genis-Laval, France 5 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 6 Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109, Australia 7 Australian Astronomical Observatory, PO Box 915, Sydney NSW 1670, Australia Received 19 April 2016 / Accepted 7 May 2016 ABSTRACT We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ∼4 Re, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps. -
121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S. -
The Milky Way Galaxy Contents Summary
UNESCO EOLSS ENCYCLOPEDIA The Milky Way galaxy James Binney Physics Department Oxford University Key Words: Milky Way, galaxies Contents Summary • Introduction • Recognition of the size of the Milky Way • The Centre • The bulge-bar • History of the bulge Globular clusters • Satellites • The disc • Spiral structure Interstellar gas Moving groups, associations and star clusters The thick disc Local mass density The dark halo • Summary Our Galaxy is typical of the galaxies that dominate star formation in the present Universe. It is a barred spiral galaxy – a still-forming disc surrounds an old and barred spheroid. A massive black hole marks the centre of the Galaxy. The Sun sits far out in the disc and in visible light our view of the Galaxy is limited by interstellar dust. Consequently, the large-scale structure of the Galaxy must be inferred from observations made at infrared and radio wavelengths. The central bar and spiral structure in the stellar disc generate significant non-axisymmetric gravitational forces that make the gas disc and its embedded star formation strongly non-axisymmetric. Molecular hydrogen is more centrally concentrated than atomic hydrogen and much of it is contained in molecular clouds within which stars form. Probably all stars are formed in an association or cluster, and energy released by the more massive stars quickly disperses gas left over from their birth. This dispersal of residual gas usually leads to the dissolution of the association or cluster. The stellar disc can be decomposed to a thin disc, which comprises stars formed over most of the Galaxy’s lifetime, and a thick disc, which contains only stars formed in about the Galaxy’s first gigayear. -
Galactic Rotation in Gaia DR1
Mon. Not. R. Astron. Soc. 000,1{6 (2017) Printed 10 February 2017 (MN LATEX style file v2.2) Galactic rotation in Gaia DR1 Jo Bovy? Department ofy Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada and Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 30 January 2017 ABSTRACT The spatial variations of the velocity field of local stars provide direct evidence of Galactic differential rotation. The local divergence, shear, and vorticity of the velocity field—the traditional Oort constants|can be measured based purely on astrometric measurements and in particular depend linearly on proper motion and parallax. I use data for 304,267 main-sequence stars from the Gaia DR1 Tycho-Gaia Astrometric Solution to perform a local, precise measurement of the Oort constants at a typical heliocentric distance of 230 pc. The pattern of proper motions for these stars clearly displays the expected effects from differential rotation. I measure the Oort constants to be: A = 15:3 0:4 km s−1 kpc−1, B = 11:9 0:4 km s−1 kpc−1, C = 3:2 0:4 km s−1 kpc−1 ±and K = 3:3 0:6 km s−−1 kpc−1±, with no color trend over− a wide± range of stellar populations.− These± first confident measurements of C and K clearly demonstrate the importance of non-axisymmetry for the velocity field of local stars and they provide strong constraints on non-axisymmetric models of the Milky Way. Key words: Galaxy: disk | Galaxy: fundamental parameters | Galaxy: kinematics and dynamics | stars: kinematics and dynamics | solar neighborhood 1 INTRODUCTION use Cepheids to investigate the velocity field on large scales (> 1 kpc) with a kinematically-cold stellar tracer population Determining the rotation of the Milky Way's disk is diffi- (e.g., Feast & Whitelock 1997; Metzger et al. -
New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope&amp;#39;s view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way. -
Massive Stars in the Galactic Center Quintuplet Cluster
Institut für Physik und Astronomie Astrophysik Massive stars in the Galactic Center Quintuplet cluster Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Adriane Liermann Potsdam, Juni 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - No Derivative Works 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3722/ URN urn:nbn:de:kobv:517-opus-37223 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-37223] Summary The presented thesis describes the observations of the Galactic center Quintuplet cluster, the spectral analysis of the cluster Wolf-Rayet stars of the nitrogen sequence to determine their fundamental stellar parameters, and discusses the obtained results in a general context. The Quintuplet cluster was discovered in one of the first infrared surveys of the Galactic center region (Okuda et al. 1987, 1989) and was observed for this project with the ESO-VLT near-infrared integral field instrument SINFONI-SPIFFI. The subsequent data reduction was performed in parts with a self-written pipeline to obtain flux-calibrated spectra of all objects detected in the imaged field of view. First results of the observation were compiled and published in a spectral catalog of 160 flux-calibrated K-band spectra in the range of 1.95 to 2.45 µm, containing 85 early-type (OB) stars, 62 late-type (KM) stars, and 13 Wolf-Rayet stars. -
Secular Evolution of Late-Type Disc Galaxies: Formation of Bulges and the Origin of Bar Dichotomy
Mon. Not. R. Astron. Soc. 312, 194±206 (2000) Secular evolution of late-type disc galaxies: formation of bulges and the origin of bar dichotomy Masafumi Noguchiw Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan Accepted 1999 September 21. Received 1999 September 21; in original form 1999 April 8 ABSTRACT Origins of galactic bulges and bars remain elusive, although they constitute fundamental components of disc galaxies. This paper proposes that the secular evolution process driven by the interstellar gas in galactic discs is closely associated with the formation of bulges and bars, and tries to explain the observed variation of these components along the Hubble morphological sequence. The ample interstellar medium serves as a coolant which makes the galactic disc gravitationally unstable and induces fragmentation of the disc. The resulting clumps spiral in to the disc centre because of dynamical friction. Efficiency of this process is governed by the gas-richness of the galactic disc, which is in turn controlled by two parameters: (i) the rapidity of the infall of the halo primordial gas to the disc plane and (ii) the amount of total accreted matter. When these two parameters are appropriately related to the mass and density of the galaxy and the effect of a star formation threshold in the disc is introduced, the gas-driven evolution through disc clumping leads to the appearance of two evolution regimes along the Hubble sequence, separated by the intermediate Hubble type for which the gas-driven mass concentration is minimal. Spiral galaxies of relatively early Hubble type (characterized by large mass and density) experience a rapid clump accumulation to the disc centre in their early evolution phase, which is identified with the formation of a bulge.