Glacier Retreat and Melt-Lake Expansion at Stephenson Glacier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2016 Heard Island Expedition Project Description
2016 Heard Island Expedition Project Description Definition TITLE BIOGEOCHEMICAL COMPOSITION OF THE SUBGLACIAL REGIME ON HEARD ISLAND USING GLACIAL STREAMS AS REMOTE SAMPLING PROBES Abstract We plan to examine the chemical composition and particulate loads of glacial streams at Heard Island as a probe of the geochemical and geophysical composition of the parent rocks, and the microbiological activity of the subglacial till. Given the impressive size and discharge of many of these streams, and their deposition of large amounts of fine sediment in various lagoons and the ocean, these streams are obviously transporting large amounts of material from underneath the glaciers. Lixiviation and direct solution will add solutes to the meltwater, providing a clear chemical signature in samples taken downstream. In addition, subglacial till is a refugium for microbial life which will be carried in the runoff. This work will consist of collecting samples from as many streams as possible, followed by laboratory characterization of the particulates, solutes, and bioactive components. Principal Investigator Fred Belton Cordell Expeditions Principal Investigator Robert Schmieder Cordell Expeditions Co-Investigator Gavin Marshall Tangaroa Blue Foundation Co-Investigator William Mitchell Cordell Expeditions Co-Investigator Staff U. S. Geological Survey Co-Investigator Carlos Nascimento Biochemist Co-Investigator Patrick Quilty University of Tasmania Co-Investigator Maria Hauger Consultant Co-Investigator Onsite team members Cordell Expeditions Context Background Satellite images of Heard Island taken in 2014 have sufficient resolution to exhibit many glacial melt streams, clearly seen as they approach the shoreline and disappear into the ocean, some entering lagoons depositing large amounts of fine sediment. Most of these streams, especially the longer ones (descending up to 3 km) show classic meanders with periods ca. -
Impact of Climate Change in Kalabaland Glacier from 2000 to 2013 S
The Asian Review of Civil Engineering ISSN: 2249 - 6203 Vol. 3 No. 1, 2014, pp. 8-13 © The Research Publication, www.trp.org.in Impact of Climate Change in Kalabaland Glacier from 2000 to 2013 S. Rahul Singh1 and Renu Dhir2 1Reaserch Scholar, 2Associate Professor, Department of CSE, NIT, Jalandhar - 144 011, Pubjab, India E-mail: [email protected] (Received on 16 March 2014 and accepted on 26 June 2014) Abstract - Glaciers are the coolers of the planet earth and the of the clearest indicators of alterations in regional climate, lifeline of many of the world’s major rivers. They contain since they are governed by changes in accumulation (from about 75% of the Earth’s fresh water and are a source of major snowfall) and ablation (by melting of ice). The difference rivers. The interaction between glaciers and climate represents between accumulation and ablation or the mass balance a particularly sensitive approach. On the global scale, air is crucial to the health of a glacier. GSI (op cit) has given temperature is considered to be the most important factor details about Gangotri, Bandarpunch, Jaundar Bamak, Jhajju reflecting glacier retreat, but this has not been demonstrated Bamak, Tilku, Chipa ,Sara Umga Gangstang, Tingal Goh for tropical glaciers. Mass balance studies of glaciers indicate Panchi nala I , Dokriani, Chaurabari and other glaciers of that the contributions of all mountain glaciers to rising sea Himalaya. Raina and Srivastava (2008) in their ‘Glacial Atlas level during the last century to be 0.2 to 0.4 mm/yr. Global mean temperature has risen by just over 0.60 C over the last of India’ have documented various aspects of the Himalayan century with accelerated warming in the last 10-15 years. -
Protecting the Crown: a Century of Resource Management in Glacier National Park
Protecting the Crown A Century of Resource Management in Glacier National Park Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) RM-CESU Cooperative Agreement H2380040001 (WASO) RM-CESU Task Agreement J1434080053 Theodore Catton, Principal Investigator University of Montana Department of History Missoula, Montana 59812 Diane Krahe, Researcher University of Montana Department of History Missoula, Montana 59812 Deirdre K. Shaw NPS Key Official and Curator Glacier National Park West Glacier, Montana 59936 June 2011 Table of Contents List of Maps and Photographs v Introduction: Protecting the Crown 1 Chapter 1: A Homeland and a Frontier 5 Chapter 2: A Reservoir of Nature 23 Chapter 3: A Complete Sanctuary 57 Chapter 4: A Vignette of Primitive America 103 Chapter 5: A Sustainable Ecosystem 179 Conclusion: Preserving Different Natures 245 Bibliography 249 Index 261 List of Maps and Photographs MAPS Glacier National Park 22 Threats to Glacier National Park 168 PHOTOGRAPHS Cover - hikers going to Grinnell Glacier, 1930s, HPC 001581 Introduction – Three buses on Going-to-the-Sun Road, 1937, GNPA 11829 1 1.1 Two Cultural Legacies – McDonald family, GNPA 64 5 1.2 Indian Use and Occupancy – unidentified couple by lake, GNPA 24 7 1.3 Scientific Exploration – George B. Grinnell, Web 12 1.4 New Forms of Resource Use – group with stringer of fish, GNPA 551 14 2.1 A Foundation in Law – ranger at check station, GNPA 2874 23 2.2 An Emphasis on Law Enforcement – two park employees on hotel porch, 1915 HPC 001037 25 2.3 Stocking the Park – men with dead mountain lions, GNPA 9199 31 2.4 Balancing Preservation and Use – road-building contractors, 1924, GNPA 304 40 2.5 Forest Protection – Half Moon Fire, 1929, GNPA 11818 45 2.6 Properties on Lake McDonald – cabin in Apgar, Web 54 3.1 A Background of Construction – gas shovel, GTSR, 1937, GNPA 11647 57 3.2 Wildlife Studies in the 1930s – George M. -
Terminal Zone Glacial Sediment Transfer at a Temperate Overdeepened Glacier System Swift, D
University of Dundee Terminal zone glacial sediment transfer at a temperate overdeepened glacier system Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R. Published in: Quaternary Science Reviews DOI: 10.1016/j.quascirev.2017.11.027 Publication date: 2018 Licence: CC BY-NC-ND Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Swift, D. A., Cook, S. J., Graham, D. J., Midgley, N. G., Fallick, A. E., Storrar, R., Toubes Rodrigo, M., & Evans, D. J. A. (2018). Terminal zone glacial sediment transfer at a temperate overdeepened glacier system. Quaternary Science Reviews, 180, 111-131. https://doi.org/10.1016/j.quascirev.2017.11.027 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Quaternary Science Reviews 180 (2018) 111e131 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Terminal zone glacial sediment transfer at a temperate overdeepened glacier system * D.A. -
The Impact of Glacier Geometry on Meltwater Plume Structure and Submarine Melt in Greenland Fjords
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The impact of glacier geometry on meltwater 10.1002/2016GL070170 plume structure and submarine melt Key Points: in Greenland fjords • We simulate subglacial plumes and submarine melt in 12 Greenland fjords D. Carroll1, D. A. Sutherland1, B. Hudson2, T. Moon1,3, G. A. Catania4,5, E. L. Shroyer6, J. D. Nash6, spanning grounding line depths from 4,5 4,5 7 8 8 100 to 850 m T. C. Bartholomaus , D. Felikson , L. A. Stearns , B. P. Y. Noël , and M. R. van den Broeke • Deep glaciers produce warm, salty 1 2 subsurface plumes that undercut ice; Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA, Applied Physics Laboratory, University of shallow glaciers drive cold, fresh Washington, Seattle, Washington, USA, 3Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, surface plumes that can overcut Bristol, UK, 4Institute for Geophysics, University of Texas, Austin, Texas, USA, 5Department of Geology, University of Texas, • Plumes in cold, shallow fjords can Austin, Texas, USA, 6College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, induce comparable depth-averaged 7 8 melt rates to warm, deep fjords due to Department of Geology, University of Kansas, Lawrence, Kansas, USA, Institute for Marine and Atmospheric Research sustained upwelling velocities Utrecht, Utrecht University, Utrecht, Netherlands Supporting Information: Abstract Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling • Supporting Information S1 plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes Correspondence to: enhance melt and undercutting, leading to calving and potential glacier destabilization. -
Colonizers of Very Recent Glaciomarine Lagoons on Heard Island
2016 Heard Island Expedition Project Description Definition TITLE FIRST COLONIZERS OF VERY RECENT GLACIOMARINE LAGOONS ON HEARD ISLAND Abstract Due to the extraordinarily rapid melting of the Stephenson Glacier on the eastern flank of Heard Island, a large (ca. 1 mi) lagoon was created within the last decade. The lagoon communicates with the ocean through a large vent on its southern extreme; mixing with oceanic water undoubtedly is enabling invasive colonization of the lake by marine organisms. We will investigate these first colonizers by two means: (1) Documenting and sampling the intertidal zone and shallow water biota on the lake edge; and (2) Sampling the benthic sedimentary deposits in the deeper parts of the lake using a clamshell grab equipped with an underwater camera. In addition to the biota, water samples will be taken for physical and chemical analysis. Other lagoons on Heard Island also show opening and closing of oceanic channels during the past 20 years, and these will be studied in the context of first colonizers. Principal Investigator Robert Schmieder Cordell Expeditions Co-Investigator Robert van Syoc California Academy of Sciences Co-Investigator Gordon Hendler Los Angeles Museum of Natural History Co-Investigator Rich Mooi California Academy of Sciences Co-Investigator Giuliana Furci The Fungi Foundation (Chile) Co-Investigator Rocco Mancinelli NASA Ames Laboratory Co-Investigator Richard Moe University of California Jepsen Herbarium Co-Investigators Onsite team members Cordell Expeditions Context Background Satellite images show that the Stephenson Glacier, formerly dominating the area at Spit Bay, retreated by more than a mile in the short interval 2003-2008. -
Heard and Mcdonald Islands Australia
HEARD AND MCDONALD ISLANDS AUSTRALIA Heard Island and the McDonald Islands are in the Southern Ocean, approximately 4,100 km south- west of Perth and 1,700 km from the Antarctic continent. Their distinctive conservation value is as one of the world’s rare pristine island ecosystems which have virtually no record of alien species and minimal human impact; also as the only volcanically active subantarctic islands they provide a window into ongoing tectonic activity, geomorphic processes and glacial dynamics. COUNTRY Australia NAME Heard and McDonald Islands NATURAL WORLD HERITAGE SERIAL SITE 1997: Inscribed on the World Heritage List under Natural Criteria viii and ix. STATEMENT OF OUTSTANDING UNIVERSAL VALUE [pending] The UNESCO World Heritage Committee issued the following statement at the time of inscription: Justification for Inscription The Committee inscribed this property under criteria (viii) and (ix). It noted that this site is the only volcanically active sub-Antarctic island and illustrates ongoing geomorphic processes and glacial dynamics in the coastal and submarine environment and sub-Antarctic flora and fauna, with no record of alien species. The Committee repeated its request by the sixteenth session for further documentation on the marine resources of the site. IUCN MANAGEMENT CATEGORY 1a Strict Nature Reserve BIOGEOGRAPHICAL PROVINCE Insulantarctica (7.4.9) GEOGRAPHICAL LOCATION Located in the southern Indian Ocean 4,100 km south-west of Australia and 1,700 km north of Mawson Base, Antarctica. Heard Island is at 53°06'S by 73°30'E with the McDonald Islands 43.5 km west of it at 53°03'S by 72°36'E. -
Origin and Evolution of the Sub-Antarctic Islands: the Foundation
Papersnd a Proceedings of the Royal Society of Tasmania, Volume 141 (1), 2007 35 ORIGIN AND EVOLUTION OF THE SUB-ANTARCTIC ISLANDS: THE FOUNDATION by Patrick G. Quilty (with 23 text-figures and two tables) Quilty, P.G. 2007 (23:xi): Origin and evolution of the sub-Antarctic islands: the foundation.Papers and Proceedings of the Royal Society of Tasmania 141 (1): 35-58. https://doi.org/10.26749/rstpp.141.1.35 ISSN 0080-4703. School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia. Email: P.Quil [email protected] Sub-Antarctic islands have a diversity of origins in detail but most are volcanic and very young suggesting that they are short-lived and that the distribution would have been very differenta few million years ago. 'They contrast with the common tourist brochure concept of oceanic islands. As the Antarctic Plate is virtually static, the islands seldom show signs of association with long-lived linear island chains and most thus stand alone. Longer-lived islands are either on submarine plateaux or are continental remnants of the dispersion of Gondwana. The islands are classified in relation to raised sea-floor, transform fault, triple junction, subduction zone, submarine plateau, submerged continent or continental. Many are difficult of access and poorly known geologically. Their geological history controls their many other roles such as sites as observatories, or for study of colonisation, evolution and speciation rates. Key Words: Sub-Antarctic islands, geological evolution, Macquarie Island, Balleny Islands, Scott Island, Campbell Island, Antipodes Island, Auckland Islands, Enderby Island, Peter I Island, Islas Diego Ramirez, South Georgia, South Sandwich Islands, Bouvetoya, Gough Island, Marion Island, Prince Edward Island, Iles Crozet, Amsterdam Island, St Paul Island, Kerguelen Plateau, Iles Kerguelen, Heard Island, McDonald Island. -
Glaciers of the Canadian Rockies
Glaciers of North America— GLACIERS OF CANADA GLACIERS OF THE CANADIAN ROCKIES By C. SIMON L. OMMANNEY SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD Edited by RICHARD S. WILLIAMS, Jr., and JANE G. FERRIGNO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1386–J–1 The Rocky Mountains of Canada include four distinct ranges from the U.S. border to northern British Columbia: Border, Continental, Hart, and Muskwa Ranges. They cover about 170,000 km2, are about 150 km wide, and have an estimated glacierized area of 38,613 km2. Mount Robson, at 3,954 m, is the highest peak. Glaciers range in size from ice fields, with major outlet glaciers, to glacierets. Small mountain-type glaciers in cirques, niches, and ice aprons are scattered throughout the ranges. Ice-cored moraines and rock glaciers are also common CONTENTS Page Abstract ---------------------------------------------------------------------------- J199 Introduction----------------------------------------------------------------------- 199 FIGURE 1. Mountain ranges of the southern Rocky Mountains------------ 201 2. Mountain ranges of the northern Rocky Mountains ------------ 202 3. Oblique aerial photograph of Mount Assiniboine, Banff National Park, Rocky Mountains----------------------------- 203 4. Sketch map showing glaciers of the Canadian Rocky Mountains -------------------------------------------- 204 5. Photograph of the Victoria Glacier, Rocky Mountains, Alberta, in August 1973 -------------------------------------- 209 TABLE 1. Named glaciers of the Rocky Mountains cited in the chapter -
Durham Research Online
Durham Research Online Deposited in DRO: 23 June 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hodgson, D.A. and Graham, A.G.C. and Roberts, S.J. and Bentley, M.J. and O¡ Cofaigh, C. and Verleyen, E. and Vyverman, W. and Jomelli, V. and Favier, V. and Brunstein, D. and Verfaillie, D. and Colhoun, E.A. and Saunders, K.M. and Selkirk, P.M. and Mackintosh, A. and Hedding, D.W. and Nel, W. and Hall, K. and McGlone, M.S. and Van der Putten, N. and Dickens, W.A. and Smith, J.A. (2014) 'Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands.', Quaternary science reviews., 100 . pp. 137-158. Further information on publisher's website: http://dx.doi.org/10.1016/j.quascirev.2013.12.001 Publisher's copyright statement: c 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. -
S1 Processing of Terminus Positions Many of the Published Sources
S1 Processing of terminus positions Many of the published sources (Table S1) have taken care to account for seasonality in terminus position by, for example, sampling at the same time each year, but we do not think this is a hugely important consideration because the long-term changes we are interested in are far larger than the seasonal variability at a given glacier. When we had to convert terminus 5 traces to terminus position (e.g. for the NSIDC positions) we used the bow method (Bjork et al., 2012). Many glaciers have a terminus position dataset coming from more than one source. In these cases we remove or merge the datasets according to the procedure summarized in Figure S1. Where a dataset has a shorter time period and a lower or similar sampling frequency compared to another dataset, the former dataset is removed. For example, the Carr et al. (2017) and Bunce et al. (2018) datasets are removed in favor of the Cowton et al. (2018) dataset for Helheim glacier (Figure S2). 10 We merge two datasets when a longer record can be made by combining the two. The datasets are merged by calculating an offset during the overlapping period, and then shifting one of the datasets to make a continuous record. The final terminus position record for Helheim thus consists of a merged form of the Andresen et al. (2012), Cowton et al. (2018) and Joughin et al. records (Figure S2). Lastly, glaciers that are known to have a permanent ice shelf/tongue (Petermann, Ryder, 79N), or to surge (Storstrommen) are removed from the dataset. -
CHANGES in HEARD ISLAND GLACIERS, KING PENGUINS and Furby SEALS G
Papers and Proceedings of the Royal Society of Tasmania, Volume 133(2), 2000 47 CHANGES IN HEARD ISLAND GLACIERS, KING PENGUINS AND FURby SEALS G. M. Budd SINCE 1947 (with two tables, three text-figures and one plate) BUDD, G.M., 2000 (30:vi): Changes in Heard Island glaciers, king penguins and fur seals since 1947. In Banks M.R. & Brown, M.]. (Eds): HEARD ISLAND Pap. Proc. R. Soc. Tasm. 133 (2): 47-60. https://doi.org/10.26749/rstpp.133.2.47 ISSN 0080-4703. School of Exercise and RS. Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, Australia 2141. The purpose of this paper is to summarise and discuss the changes in glaciers, king penguins and fur seals reported by the nine wintering parties and 11 summer expeditions that have visited Heard Island since 1947, with emphasis upon those of the years between 1947 and 1971. These early years were notable for an initial period (1947-55) of minimal change, and a subsequent period(1963-71) of rapid change in which a complex pattern of asynchronous glacier retreat and readvance was observed and the main features of the island's recolonisation by king penguins and fur seals were established. Subsequent expeditions (1980-93) have reported continuing glacier recession, evidently in response to warmer air temperatures, and a continuing exponential increase in king penguins and fur seals. The glacier observations show that the Heard Island glaciers are sensitive indicators of climate change in the Southern Ocean, and of the interactions between climate and glacier topography. The island's recolonisation by king penguins and fur seals is attributed mainly to an improved food supply which may itself, like the glacier recession, be a response to changes in atmospheric and oceanic circulation.