Sulfidation of Copper Oxide Nanoparticles and Properties of Resulting Copper Sulfide

Total Page:16

File Type:pdf, Size:1020Kb

Sulfidation of Copper Oxide Nanoparticles and Properties of Resulting Copper Sulfide See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262069326 Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide Article in Environmental science. Nano · June 2014 DOI: 10.1039/C4EN00018H CITATIONS READS 16 170 8 authors, including: John Stegemeier Clément Levard Carnegie Mellon University French National Centre for Scientific Research 12 PUBLICATIONS 94 CITATIONS 57 PUBLICATIONS 1,699 CITATIONS SEE PROFILE SEE PROFILE Clinton William Noack Gregory V Lowry Carnegie Mellon University Carnegie Mellon University 12 PUBLICATIONS 42 CITATIONS 202 PUBLICATIONS 10,656 CITATIONS SEE PROFILE SEE PROFILE Available from: Clinton William Noack Retrieved on: 15 November 2016 Environmental Science Nano View Article Online PAPER View Journal Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide† Cite this: DOI: 10.1039/c4en00018h Rui Ma,abh John Stegemeier,ab Clément Levard,bc James G. Dale,bd Clinton W. Noack,a Tiffany Yang,ab Gordon E. BrownJr.efg and Gregory V. Lowry*ab Many nanoparticles (NPs) are transformed in the environment, and the properties of the transformed materials must be determined to accurately assess their environmental risk. Sulfidation is expected to alter the speciation and properties of CuO NPs significantly. Here, commercially available 40 nm CuO NPs were characterized and sulfidized in water by inorganic sulfide, and the properties of the resulting products were determined. X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy indi- cate that CuO (tenorite) is sulfidized by inorganic sulfide to several copper sulfide (CuxSy) species including crystalline CuS (covellite), and amorphous (CuxSy) species at ambient temperature. Some Cu(II) was reduced to Cu(I) during sulfidation, coupled with sulfide oxidation to sulfate, resulting in the formation of small amounts of several copper sulfate hydroxide species as well. The extent of sulfidation depends on the sul- fide to CuO molar concentration ratio used. At the highest S/Cu molar ratio of 2.16, 100% sulfidation was not reached in 7 days, as evidenced by the persistence of small amounts of CuO in the NPs. Sulfidation increased the fraction of copper passing a 3 kDa MWCO filter representing soluble forms of Cu and any Received 7th February 2014, small CuxSy clusters compared to the pristine CuO NPs at environmentally relevant neutral pH. This high Accepted 26th April 2014 solubility is a result of oxidative dissolution of CuxSy, formation of relatively more soluble copper sulfate hydroxides, and the formation of small CuS nanoclusters that pass the 3 kDa MWCO filter. These findings DOI: 10.1039/c4en00018h suggest that sulfidation of CuO may increase its apparent solubility and resulting bioavailability and rsc.li/es-nano eco-toxicity attributed to toxic Cu2+. Published on 29 April 2014. Downloaded 20/06/2014 18:01:45. Nano impact Metal and metal oxide nanomaterials that find their way into reducing environments such as wastewater treatment plants or subaquatic sediments may potentially become sulfidized. The properties of the sulfidized materials will control their fate and toxicity so those properties must be determined. This work describes the sulfidation of CuO nanoparticles, and determines the properties of the sulfidized copper product under environmental conditionsthat are relevant to predicting fate and toxicity, e.g. solubility. This enhances our understanding of the behavior of these nanomaterials in important environmental compartments, and better enables predictions of their interactions with natural systems. a Department of Civil & Environmental Engineering, Carnegie Mellon University, USA. E-mail: [email protected] b Center for Environmental Implications of Nanotechnology (CEINT), USA Introduction c Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545 Aix en Provence, France d Department of Geosciences, Virginia Tech, USA Copper-based nanoparticles (NPs) are being used in products e Department of Geological & Environmental Sciences, Stanford University, USA or technologies like semiconductors, heat transfer fluids, cata- – f Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator lysts, batteries, solar cells and biocides.1 6 Copper based NPs Laboratory, USA such as CuO and elemental Cu(0) were found to be among the g Department of Photon Science, SLAC National Accelerator Laboratory, top five most reported metal NPs in recent (2011) nanotech- Menlo Park, CA, USA h Ecological Environment Institute, Chinese Academy for Environmental Planning, nology patents, indicating the potential for an increasing 7 Beijing, China use of these NPs. Their widespread uses will likely lead to † Electronic supplementary information (ESI) available: Molar ratios of Cu to S subsequent release into the environment, and will raise used in sulfidation, TGA weight loss over temperature of CuO NPs, peak concern about their potential toxicity. Nano Cu(0) was matching of XRD standard peak from mineral database for S/Cu = 0.22 and S/Cu = 2.16 sulfidized particles, linear combination fitting results and XANES reported to have a thin oxide layer when exposed to air, spectra from XAS, additional TEM images of the sulfidized CuO particles. where the Cu(0) is oxidized to form Cu2O and then ulti- 8 See DOI: 10.1039/c4en00018h mately to CuO in an aerobic environment. Hence, CuO This journal is © The Royal Society of Chemistry 2014 Environ. Sci.: Nano View Article Online Paper Environmental Science: Nano NPs are an environmentally relevant form of copper for sulfide species under environmental conditions (i.e. ambient assessing the risks of nano copper products. temperature, neutral pH, and low ionic strength). The toxicity of CuO NPs to a variety of organisms has been In this study we sulfidized commercially available CuO NPs studied extensively. According to a recent critical review, CuO using different S/Cu molar ratios. The pristine CuO NPs and the NPs are toxic to crustaceans, algae, fish and bacteria, but resulting sulfidized CuxSy/CuO NPs were extensively character- typically requires higher doses than Cu2+ ions to achieve the ized. The objectives of this study were to (1) provide mechanistic same effects. Cu2+ was found to be more toxic to all organ- insights about the transformation of CuO in the presence of sul- isms except for yeast and mammalian cells in vitro.9 Although fide in aqueous solution; and (2) determine the properties and Cu(0) NPs can catalyze the formation of reactive oxygen spe- solubility of the resulting sulfidized nanoparticles. The pristine cies (ROS), leading to toxicity.10,11 CuO dissolution to release and sulfidized particles were characterized using transmission Cu2+ accounted for most of the observed toxicity in vitro and electron microscopy (TEM), dynamic light scattering (DLS), in vivo.12 This indicates that the ability of the NPs to release thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Cu2+ plays a key role in copper NP toxicity. synchrotron based X-ray absorption spectroscopy (XAS). Their The dissolution of CuO NPs resulting in the release of Cu2+ dissolution rate was determined by measuring ion release by ions is pH dependent. The dissolution minimum is expected at inductively coupled plasma mass spectrometry (ICP-MS). near neutral pH (6–8). However, the solubility is significantly higher at lower pH (4–5). Dissolution of CuO NPs is also promoted Materials and methods by strong ligands such as amino acids,11,13 even at neutral pH. CuO NPs This behavior makes CuO NPs one of the more toxic metal oxides NP in cell culture media (containing amino acids).14 The CuO NPs (40 nm) were purchased from US Research Sulfidation is an important transformation of many metal Nanomaterials, Inc. (Houston, TX). The primary particle size is and metal oxide NPs. This is because sulfidation has been ~40 nm and the particles are generally spherical. The N2-BET − demonstrated to affect NP chemical composition,15,16 to reduce specific surface area provided by the manufacturer is 20 m2 g 1. ion release,16,17 and to significantly decrease the toxicity of The particles were used as received. The manufacturer claims Ag NPs to a range of organism types.15,18 Ag,ZnO,andCuO that the CuO NPs contain no organic capping agent. This was NPs all contain class B soft metals19 and are likely to sulfidize confirmed by thermo gravimetric analysis (TGA) as described once released into the environment. Donner et al. showed below. The crystal structure of the initial CuO NPs is described that 74–92% of the Cu is present as Cu(I)andCu(II) sulfide in the results section. (chalcocite and covellite, respectively) in fresh biosolids that had been amended with CuO NPs, but these inorganic Sulfidation of CuO nanoparticles Cu-sulfide species were transformed to Cu–organic sulfur com- Sulfidation of CuO NPs was conducted following similar pro- 20 16 plexes and Cu(II) sulfide in aged biosolids. Dimkpa et al. cedures as previously described for sulfidation of ZnO NPs. showed that exposure of plant roots to CuO NPs resulted in In order to minimize the oxidation of sulfide by dissolved Published on 29 April 2014. Downloaded 20/06/2014 18:01:45. – bioaccumulation of Cu2S, Cu cysteine complexes, and CuO oxygen in a typical experiment, all solutions were prepared 21 NPs in the plant. Based on these previous findings, it is using N2-purgedDIwaterandN2-purged headspace. The CuO important to understand the sulfidation products
Recommended publications
  • 70-6859 RATLIFF, John Leigh, 1936
    This dissertation has been microfilmed exactly as received 70-6859 RATLIFF, John Leigh, 1936- RE ACTION-DIFFUSION IN A METAL-NONMETAL BINARY SYSTEM AND THE MULTICOMPONENT SYSTEMS Ti/SiC AND Ti-6Al-4V/SiC. The Ohio State University, Ph.D., 1969 Engineering, metallurgy University Microfilms, Inc., Ann Arbor, Michigan REACTION—DIFFUSION IN A METAL-NONMETAL BINARY SYSTEM AND THE MULTICOMPONENT SYSTEMS Ti/SiC AND Ti-6Al-4V/SiC DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Leigh Ratliff, Met.E., M.S. *********** The Ohio State University 1969 Approved by Adviser Department of Metallurgical Engineering Dedicated to Mary Ann ACKNOWLEDGMENTS First, I would like to acknowledge my adviser, Dr. G. W. Powell, whose continuous interest and willing­ ness to discuss the results of this work as it progressed were most appreciated. Recognition is also extended to Dr. R. A. Rapp whose advice and contribution of time spent in informative discussions were appreciated. Recognition is given to Mr. D. E. Price of the Battelle Memorial Institute for helpful experimental suggestions and for assistance in performing high- temperature, vacuum annealing and sintering operations. Dr. H. D. Colson of The Ohio State University Department of Mathematics is deserving of special thanks for his helpful suggestions pertaining to the numerical solution of differential equations. Appreciation is extended to Mr. R. 0. Slonaker for preparing the computer program which performed the absorption corrections on the electron-microprobe analyses. Appreciation is also extended to Mr. Neal Farrar and Mr. Ross Justus for their excellent suggestions and work which was performed in relation to the design and construction of experimental equipment.
    [Show full text]
  • The Discovery and Acceptance of the Kirkendall Effect
    The Discovery and Acceptance of the Kirkendall Effect http://www.tms.org/pubs/journals/JOM/9706/Nakajima-9706.html The following article appears in the journal JOM, 49 (6) (1997), pp. 15-19. JOM is a publication of The Minerals, Metals & Materials Society Historical Insight The Discovery and Acceptance of the CONTENTS Kirkendall Effect: The Result of a INTRODUCTION Short Research Career KIRKENDALL’S CAREER THE FIRST PAPER (1939) Hideo Nakajima AND D.Sc. DISSERTATION THE SECOND PAPER (1942) THE THIRD PAPER (1947) Editor's Note: Some of the artwork employed here was photographically reproduced from MEHL’S CRITICISM AND existing publications. As a result, the quality of the images is sometimes less than ideal. EXPERIMENTS WHY KIRKENDALL In the 1940s, it was a common belief that atomic diffusion took place via a direct STOPPED HIS RESEARCH exchange or ring mechanism that indicated the equality of diffusion of binary CAREER elements in metals and alloys. However, Ernest Kirkendall first observed CONCLUSION inequality in the diffusion of copper and zinc in interdiffusion between brass and ACKNOWLEDGEMENTS copper. This article reports how Kirkendall discovered the effect, now known as References the Kirkendall Effect, in his short research career. INTRODUCTION The fragrance of flowers in a corner of a room drifts even to far distances. When one droplet of ink is dripped into a cup of water, the ink soon spreads, even without stirring, and quickly becomes invisible. These facts show that even if there is no macroscopic flow in a gas or a liquid, molecular movement (i.e., diffusion) can take place, and different entities can mix with each other.
    [Show full text]
  • Kirkendall Effect
    Kirkendall Effect To show that diffusion takes place via a vacancy mechanism Education Level : UG Course Name: Phase transformations and heat treatment LOs for prior viewing : NONE Authors Amol Subhedar (Under Guidance of Prof. M P Gururajan) Learning Objectives After interacting with this Learning Object, the learner will be able to: 1. Explain how vacancy mechanism is responsible for diffusion in Substitutional alloys 2. Explain why the marker shift in Kirkendall effect is apparent Definitions of the components/Keywords: •Vacancies -Vacancies are missing atoms in a crystal 1 structure. 2 •Ring diffusion – A proposed mechanism for diffusion in which three or four atoms in the form of a ring move simultaneously round the ring, thereby interchanging their positions 3 •Direct exchange – A proposed mechanism for diffusion achieved by the interchanging of positions of two adjacent atoms 4 •Vacancy diffusion – Diffusion process aided by vacancies in the lattice 5 Master Layout: 1(A simple Experiment) 1 Step 1: Copper and Brass separated by Molybdenum marker 2 Cu Brass 3 Molybdenum 4 5 Step 1 Description of the activity Audio narration Text to be displayed Draw a green rectangle Consider joint of pure and name it as Cu. Then copper and brass draw a attached red thin separated by insoluble rectangle on right side of marker molybdenum. green block. Name red Brass is alloy of copper strip as Molybdenum. On and zinc. right side of red strip attach a blue rectangle and name it as Brass. animation time : 2 seconds Master Layout: 1(A simple Experiment) 1 Step 2: Sample is heated 2 Heat 3 Cu Brass 4 Molybdenum 5 Step 2 Description of the activity Audio narration Text to be displayed On top of last figure Let us heat the sample.
    [Show full text]
  • Experimental Measurement of Interdiffusion Co-Efficient Comments
    Additional reading for Lecture 7: experimental measurement of interdiffusion co-efficient Comments: • It is possible to measure the interdiffusion co-efficient by determining the variation of XA or XB after annealing a diffusion couple for a given time such as that depicted by real experimental data in the plot next slide. • In cases where interdiffusion co-efficient can be assumed constant, the value of interdiffusion co-efficient can be deduced by solving the Fick’s second law for the interdiffusion case as we learned in Lecture 4 (See the very last part of the Lecture note, where unvarying interdiffusion co-efficient assumed). • However, if interdiffusion co-efficient is not constant (i.e., changing with annealing time as indeed demonstrated in the example shown below), we should use graphical solutions of Fick’s second law to get the value of interdiffusion co- efficient --- that’s exactly what we learn from Lecture 7 --- the Matano method. real data obtained from copper/zinc binary inter-diffusion upon annealing: Zinc concentration profiles after different times of anneals at 1,053 K. E.O. Kirkendall, "Diffusion of Zinc in Alpha Brass," Trans. AIME, 147 (1942), pp. 104-110 Original interface between Cu and brass (40%Zn) Copper (Cu) Brass (initially at 40% Zn, 60% Cu) The experiments shown in the last slide was carried out by Kirkendall, and first published in 1942: E.O. Kirkendall, "Diffusion of Zinc in Alpha Brass," Trans. AIME, 147 (1942), pp. 104-110. Following this observation, Kirkendall performed the famous “Kirkendall Effect” experiment and published that result in 1947: A.D.
    [Show full text]
  • A Transmission Electron Microscopy Study of Defect Generation and Microstructure Development in Ultrasonic Wire Bonding
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1992 A transmission electron microscopy study of defect generation and microstructure development in ultrasonic wire bonding Nikhil Mohan Murdeshwar University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Murdeshwar, Nikhil Mohan, "A transmission electron microscopy study of defect generation and microstructure development in ultrasonic wire bonding" (1992). Doctoral Dissertations. 1684. https://scholars.unh.edu/dissertation/1684 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Kirkendall Effect: Its Efficacy in the Formation of Hollow Nanostructures
    J. Biol. Today's World. 2016 Aug; 5 (8): 137-149 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Journal of Biology and Today's World Journal home page: http://journals.lexispublisher.com/jbtw Received: 22 June 2016 • Accepted: 28 August 2016 Review doi:10.15412/J.JBTW.01050802 The Kirkendall Effect: its Efficacy in the Formation of Hollow Nanostructures Rezvan Dehdari Vais, Hossein Heli* Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran *Correspondence should be addressed to Hossein Heli, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Tel: +987136282225; Fax: +987136281506; Email: [email protected]; [email protected]. ABSTRACT The Kirkendall effect refers to the formation of the so-called ‘Kirkendall voids’ caused by the difference in diffusion rates between two species. It is a classical phenomenon in metallurgy and since its discovery, the Kirkendall effect has been observed in different alloy systems. The development of the hollow interior consists of two main steps. The first step is the formation of the small Kirkendall voids near the original interface via a bulk diffusion process. The second step is a consequence of the surface diffusion of the core material (the fast-diffusing species) along the pore surface. Since hollow and porous structures have attracted tremendous attention due to their common applications in sensor systems, chemical reactors, catalysis, drug delivery, environmental engineering, biotechnology, etc., the Kirkendall effect dominates in the fabrication of hollow nanostructures. These nanostructures play a key role in the biological applications of hollow materials such as labeling of cellular structures/molecules, drug loading, encapsulation, delivery and release, bio-labeling, biosensors, magnetic resonance imaging, and biomedicine vehicles.
    [Show full text]
  • Role of Kirkendall Effect in Diffusion Processes in Solids
    Trans. Nonferrous Met. Soc. China 24(2014) 1−11 Role of Kirkendall effect in diffusion processes in solids C. A. C. SEQUEIRA, L. AMARAL Materials Electrochemistry Group, ICEMS, Instituto Superior Técnico, Universidade de Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal Received 7 April 2013; accepted 14 July 2013 Abstract: In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the treatment of diffusion data and the theory of diffusion itself. A diffusion-based framework was successfully employed to explain the behaviour of the Kirkendall plane. Nonetheless, the complexity of a multiphase diffusion zone and the morphological evolution during interdiffusion requires a physico-chemical approach. The interactions in binary and more complex systems are key issues from both the fundamental and technological points of view. This paper reviews the Kirkendall effect from the circumstances of its discovery to recent developments in its understanding, with broad applicability in materials science and engineering. Key words: Kirkendall effect; Kirkendall velocity; Kirkendall planes; diffusion couple technique; solid-state diffusion; interdiffusion still to be addressed. 1 Introduction In the early stage of the understanding of solid state diffusion, that is about one century ago, it was believed Diffusion processes play a key role in metallurgy, that atomic diffusion occurred by a direct exchange or a namely in physical processes such as homogenisation, ring mechanism in metallic crystals, as shown in Figs. non-martensitic transformation, precipitation, oxidation 1(a) and (b). In 1929, PFEIL [3] studied the oxidation of or sintering.
    [Show full text]
  • Effect of Vacuum on High-Temperature Degradation of Gold/Aluminum Wire Bonds in Pems
    EFFECT OF VACUUM ON HIGH-TEMPERATURE DEGRADATION OF GOLD/ALUMINUM WIRE BONDS IN PEMS Alexander Teverovsky QSS Group, Inc. GSFC/NASA, Code 562, Greenbelt, MD 20771 [email protected] finishes after ~150 hrs. resulting in the formation of intermetallic ABSTRACT compound layers of 2 to 4 µm in thickness. At 250 oC it takes ~30 min. to complete these transformations. Phase transformations Gold/aluminum wire bond degradation is one of the major failure lateral to the WB proceed concurrently the conversions of Au/Al mechanisms limiting reliability of plastic encapsulated microcircuits compounds across wire bonds, but these require more time to (PEMs) at high temperatures. It is known also that oxidative complete. degradation is the major cause of failures in epoxy composite materials; however, the effect of oxygen and/or vacuum conditions Intermetallic growth and transformations occur along with on degradation of PEMs has not been studied yet. formation of voids inside the bonds at the gold/intermetallic interface and in aluminum contact pads along the periphery of the bonds. The In this work, three groups of linear devices have been subjected voids are a result of coalescence of vacancies formed due to the to high-temperature storage in convection air chambers and in a difference between the diffusion rates of Al and Au atoms vacuum chamber. Electrical characteristics of the devices, variations (Kirkendall effect). The formation of the intermetallics makes the of the wire bond contact resistances, mass losses of the packages, and bonds stronger, but more brittle and mechanically stressed due to thermo-mechanical characteristics of the molding compounds were volumetric changed in the intermetallics compared to Au and Al [1, measured periodically during the testing.
    [Show full text]
  • Synthesis of Niti Microtubes Via the Kirkendall Effect During
    Intermetallics 92 (2018) 42–48 Contents lists available at ScienceDirect Intermetallics journal homepage: www.elsevier.com/locate/intermet Synthesis of NiTi microtubes via the Kirkendall effect during interdiffusion ☆ MARK of Ti-coated Ni wires ∗ A.E. Paz y Puentea, , D.C. Dunandb a Department of Mechanical and Materials Engineering, University of Cincinnati, 598 Rhodes Hall, P.O. Box 210072, Cincinnati, OH, 45221, USA b Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA ARTICLE INFO ABSTRACT Keywords: An additive alloying method is developed to fabricate NiTi microtubes, consisting of two steps: (i) depositing a NiTi Ti-rich coating onto ductile, pure Ni wires (50 μm in diameter) via pack cementation, resulting in a Ni core Pack cementation coated with concentric NiTi2, NiTi and Ni3Ti shells, and (ii) homogenizing the coated wires to near equiatomic ff Di usion coatings NiTi composition via interdiffusion between core and shells, while concomitantly creating Kirkendall pores. Kirkendall effect Because of the spatial confinement and radial symmetry of the interdiffusing core/shell structure, the Kirkendall Microtubes pores coalesce near the center of the wire and form a continuous longitudinal channel, thus creating a microtube. To study the evolution of Ni-Ti phases and Kirkendall pores during homogenization, coated wires were subjected to ex situ homogenization followed by (i) metallography and (ii) X-ray tomographic imaging. Near equiatomic NiTi was obtained upon homogenization at 925 °C for 4 h with compositional fluctuations between 49 and 53 at. % Ni consistent with slight variations in initial coating thickness. Kirkendall pores initially formed near the NiTi/ Ni3Ti and Ni3Ti/Ni interfaces and eventually merged into a continuous channel with an aspect ratio of at least 75.
    [Show full text]
  • Rigorous Model and Simulations of the Kirkendall Effect Diffusion in Substitutional Binary Alloys
    RIGOROUS MODEL AND SIMULATIONS OF THE KIRKENDALL EFFECT DIFFUSION IN SUBSTITUTIONAL BINARY ALLOYS by Hui-Chia Yu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science and Engineering) in The University of Michigan 2009 Doctoral Committee: Assistant Professor Katsuyo S. Thornton, Chairperson Associate Professor Krishnakumar R. Garikipati Associate Professor Joanna Mirecki-Millunchick Assistant Professor Anton Van der Ven Associate Professor Xiaofan Li, Illinois Institute of Technology Hui-Chia Yu c 2009 All rights reserved. To My Family ii ACKNOWLEDGEMENTS I am sincerely grateful to my thesis advisor Prof. Katsuyo Thornton, who has given me great support and guidance through my whole thesis work. Without her support, I would not have completed my doctoral degree. During these years, I have learned much from working with her, especially the importance of striving for high standards in work. I am deeply indebted to Prof. Anton Van der Ven, who has greatly inspired me with his strong and solid knowledge of diffusion. I thank Prof. Xiaofan Li for his very helpful suggestion to use an implicit scheme and other mathematical techniques. I also thank my other committee members Prof. Krishna Garikipati and Prof. Joanna Millunchick for reading this thesis and giving many useful comments on my work. This thesis work was mainly supported by NSF under Grant No. 0511232. This financial support has been appreciated. During these years, I have met many wonderful people here. I would like to thank my labmates: Dr. Dong-Hee Yeon, Chloe Funkhouser, Victor Chan, Hsun-Yi Chen, Nirand Pisutha-Arnond and Chal-Lan Park.
    [Show full text]
  • Direct Observation of the Nanoscale Kirkendall Effect During Galvanic Replacement Reactions
    ARTICLE DOI: 10.1038/s41467-017-01175-2 OPEN Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions See Wee Chee1,2,3, Shu Fen Tan1,2, Zhaslan Baraissov1,2,3, Michel Bosman4,5 & Utkur Mirsaidov 1,2,3,6 Galvanic replacement (GR) is a simple and widely used approach to synthesize hollow nanostructures for applications in catalysis, plasmonics, and biomedical research. The reaction is driven by the difference in electrochemical potential between two metals in a 1234567890 solution. However, transient stages of this reaction are not fully understood. Here, we show using liquid cell transmission electron microscopy that silver (Ag) nanocubes become hollow via the nucleation, growth, and coalescence of voids inside the nanocubes, as they undergo GR with gold (Au) ions at different temperatures. These direct in situ observations indicate that void formation due to the nanoscale Kirkendall effect occurs in conjunction with GR. Although this mechanism has been suggested before, it has not been verified experimentally until now. These experiments can inform future strategies for deriving such nanostructures by providing insights into the structural transformations as a function of Au ion concentra- tion, oxidation state of Au, and temperature. 1 Department of Physics, National University of Singapore, Singapore 117551, Singapore. 2 Centre for Bioimaging Sciences and Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore. 3 Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore. 4 Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore. 5 Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
    [Show full text]
  • CHAPTER 6: DIFFUSION in SOLIDS Diffusion- Steady and Non-Steady State
    CHAPTER 6: DIFFUSION IN SOLIDS Diffusion- Steady and Non-Steady State Gear from case-hardened steel (C diffusion) Diffusion - Mass transport by atomic motion ISSUES TO ADDRESS... • How does diffusion occur? Mechanisms • Gases & Liquids – random (Brownian) motion • Why is it an important part of processing? • Solids – vacancy diffusion or interstitial diffusion • How can the rate of diffusion be predicted for some simple cases? • How does diffusion depend on structure and temperature? MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08 MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08 Simple Diffusion Inter-diffusion • Interdiffusion: In alloys, atoms tend to migrate • Glass tube filled with water. from regions of large concentration. • At time t = 0, add some drops of ink to one end This is a diffusion couple. of the tube. Initially After some time • Measure the diffusion distance, x, over some time. • Compare the results with theory. Adapted from Figs. 6.1 - 2, Callister 6e. 100% 0 Concentration Profiles 2 3 MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08 MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08 1 Self-diffusion Substitution-diffusion:vacancies and interstitials • applies to substitutional impurities • Self-diffusion: In an elemental solid, atoms also migrate. • atoms exchange with vacancies Number (or concentration*) • rate depends on (1) number of vacancies; of Vacancies at T (2) activation energy to exchange. − ΔE n k T Label some atoms After some time i B ci = =e N C • kBT gives eV A * see web handout for derivation.
    [Show full text]