A Course in Combinatorial Optimization

Total Page:16

File Type:pdf, Size:1020Kb

A Course in Combinatorial Optimization A Course in Combinatorial Optimization Alexander Schrijver CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands. November 9, 2004 copyright c A. Schrijver Contents 1. Shortest paths and trees 5 1.1. Shortest paths with nonnegative lengths 5 1.2. Speeding up Dijkstra's algorithm with heaps 9 1.3. Shortest paths with arbitrary lengths 12 1.4. Minimum spanning trees 19 2. Polytopes, polyhedra, Farkas' lemma, and linear programming 23 2.1. Convex sets 23 2.2. Polytopes and polyhedra 25 2.3. Farkas' lemma 31 2.4. Linear programming 33 3. Matchings and covers in bipartite graphs 39 3.1. Matchings, covers, and Gallai's theorem 39 3.2. K}onig's theorems 40 3.3. Cardinality bipartite matching algorithm 44 3.4. Weighted bipartite matching 47 3.5. The matching polytope 50 4. Menger's theorem, flows, and circulations 53 4.1. Menger's theorem 53 4.2. Path packing algorithmically 57 4.3. Flows in networks 60 4.4. Finding a maximum flow 62 4.5. Speeding up the maximum flow algorithm 67 4.6. Circulations 70 4.7. Minimum-cost flows 72 5. Nonbipartite matching 79 5.1. Tutte's 1-factor theorem and the Tutte-Berge formula 79 5.2. Cardinality matching algorithm 82 5.3. Weighted matching algorithm 86 5.4. The matching polytope 93 5.5. The Cunningham-Marsh formula 96 6. Problems, algorithms, and running time 98 6.1. Introduction 98 6.2. Words 99 6.3. Problems 101 6.4. Algorithms and running time 101 6.5. The class NP 102 6.7. NP-completeness 104 6.8. NP-completeness of the satisfiability problem 104 6.9. NP-completeness of some other problems 107 6.10. Turing machines 109 7. Cliques, cocliques, and colourings 112 7.1. Introduction 112 7.2. Edge-colourings of bipartite graphs 116 7.3. Partially ordered sets 122 7.4. Perfect graphs 125 7.5. Chordal graphs 129 8. Integer linear programming and totally unimodular matrices 133 8.1. Integer linear programming 133 8.2. Totally unimodular matrices 135 8.3. Totally unimodular matrices from bipartite graphs 140 8.4. Totally unimodular matrices from directed graphs 144 9. Multicommodity flows and disjoint paths 149 9.1. Introduction 149 9.2. Two commodities 154 9.3. Disjoint paths in acyclic directed graphs 158 9.4. Vertex-disjoint paths in planar graphs 160 9.5. Edge-disjoint paths in planar graphs 166 9.6. A column generation technique for multicommodity flows 169 10. Matroids 174 10.1. Matroids and the greedy algorithm 174 10.2. Equivalent axioms for matroids 177 10.3. Examples of matroids 181 10.4. Two technical lemmas 184 10.5. Matroid intersection 185 10.6. Weighted matroid intersection 191 10.7. Matroids and polyhedra 195 References 200 Name index 211 Subject index 213 5 1. Shortest paths and trees 1.1. Shortest paths with nonnegative lengths Let D = (V; A) be a directed graph, and let s; t V . A walk is a sequence P = 2 (v0; a1; v1; : : : ; am; vm) where ai is an arc from vi−1 to vi for i = 1; : : : ; m. If v0; : : : ; vm all are different, P is called a path. If s = v0 and t = vm, the vertices s and t are the starting and end vertex of P , respectively, and P is called an s t walk, and, if P is a path, an s t path. The − − length of P is m. The distance from s to t is the minimum length of any s t path. (If no s t path exists, we set the distance from s to t equal to .) − − 1 It is not difficult to determine the distance from s to t: Let Vi denote the set of vertices of D at distance i from s. Note that for each i: (1) V is equal to the set of vertices v V (V V V ) for which i+1 2 n 0 [ 1 [ · · · [ i (u; v) A for some u V . 2 2 i This gives us directly an algorithm for determining the sets Vi: we set V0 := s and next we determine with rule (1) the sets V ; V ; : : : successively, until V = f. g 1 2 i+1 ; In fact, it gives a linear-time algorithm: Theorem 1.1. The algorithm has running time O( A ). j j Proof. Directly from the description. In fact the algorithm finds the distance from s to all vertices reachable from s. Moreover, it gives the shortest paths. These can be described by a rooted (directed) tree T = (V 0; A0), with root s, such that V 0 is the set of vertices reachable in D from s and such that for each u; v V 0, each directed u v path in T is a shortest u v 2 − − path in D.1 Indeed, when we reach a vertex t in the algorithm, we store the arc by which t is reached. Then at the end of the algorithm, all stored arcs form a rooted tree with this property. There is also a trivial min-max relation characterizing the minimum length of an s t path. To this end, call a subset A0 of A an s t cut if A0 = δout(U) for some − − subset U of V satisfying s U and t U.2 Then the following was observed by 2 62 Robacker [1956]: 1A rooted tree, with root s, is a directed graph such that the underlying undirected graph is a tree and such that each vertex t = s has indegree 1. Thus each vertex t is reachable from s by a unique directed s t path. 6 2δout(U) and δ−in(U) denote the sets of arcs leaving and entering U, respectively. 6 Chapter 1. Shortest paths and trees Theorem 1.2. The minimum length of an s t path is equal to the maximum number − of pairwise disjoint s t cuts. − Proof. Trivially, the minimum is at least the maximum, since each s t path intersects − each s t cut in an arc. The fact that the minimum is equal to the maximum follows − by considering the s t cuts δout(U ) for i = 0; : : : ; d 1, where d is the distance from − i − s to t and where Ui is the set of vertices of distance at most i from s. This can be generalized to the case where arcs have a certain `length'. For any `length' function l : A Q and any walk P = (v ; a ; v ; : : : ; a ; v ), let l(P ) be ! + 0 1 1 m m the length of P . That is: m (2) l(P ) := l(a): Xi=1 Now the distance from s to t (with respect to l) is equal to the minimum length of any s t path. If no s t path exists, the distance is + . − − 1 Again there is an easy algorithm, due to Dijkstra [1959], to find a minimum-length s t path for all t. Start with U := V and set f(s) := 0 and f(v) = if v = s. Next − 1 6 apply the following iteratively: (3) Find u U minimizing f(u) over u U. For each a = (u; v) A for which 2 2 2 f(v) > f(u) + l(a), reset f(v) := f(u) + l(a). Reset U := U u . n f g We stop if U = . Then: ; Theorem 1.3. The final function f gives the distances from s. Proof. Let dist(v) denote the distance from s to v, for any vertex v. Trivially, f(v) dist(v) for all v, throughout the iterations. We prove that throughout the iterations,≥ f(v) = dist(v) for each v V U. At the start of the algorithm this is 2 n trivial (as U = V ). Consider any iteration (3). It suffices to show that f(u) = dist(u) for the chosen u U. Suppose f(u) > dist(u). Let s = v ; v ; : : : ; v = u be a shortest s u path. 2 0 1 k − Let i be the smallest index with v U. i 2 Then f(vi) = dist(vi). Indeed, if i = 0, then f(vi) = f(s) = 0 = dist(s) = dist(vi). If i > 0, then (as v V U): i−1 2 n (4) f(v ) f(v ) + l(v ; v ) = dist(v ) + l(v ; v ) = dist(v ): i ≤ i−1 i−1 i i−1 i−1 i i This implies f(v ) dist(v ) dist(u) < f(u), contradicting the choice of u. i ≤ i ≤ Section 1.1. Shortest paths with nonnegative lengths 7 Clearly, the number of iterations is V , while each iteration takes O( V ) time. j j j j So the algorithm has a running time O( V 2). In fact, by storing for each vertex v the j j last arc a for which (3) applied we find a rooted tree T = (V 0; A0) with root s such that V 0 is the set of vertices reachable from s and such that for each u; v V 0, each directed u v path in T is a shortest u v path in D. 2 − − Thus we have: Theorem 1.4. Given a directed graph D = (V; A), s; t V , and a length function 2 l : A Q , a shortest s t path can be found in time O( V 2). ! + − j j Proof. See above. For an improvement, see Section 1.2. A weighted version of Theorem 1.2 is as follows: Theorem 1.5.
Recommended publications
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • The Traveling Preacher Problem, Report No
    Discrete Optimization 5 (2008) 290–292 www.elsevier.com/locate/disopt The travelling preacher, projection, and a lower bound for the stability number of a graph$ Kathie Camerona,∗, Jack Edmondsb a Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5 b EP Institute, Kitchener, Ontario, Canada N2M 2M6 Received 9 November 2005; accepted 27 August 2007 Available online 29 October 2007 In loving memory of George Dantzig Abstract The coflow min–max equality is given a travelling preacher interpretation, and is applied to give a lower bound on the maximum size of a set of vertices, no two of which are joined by an edge. c 2007 Elsevier B.V. All rights reserved. Keywords: Network flow; Circulation; Projection of a polyhedron; Gallai’s conjecture; Stable set; Total dual integrality; Travelling salesman cost allocation game 1. Coflow and the travelling preacher An interpretation and an application prompt us to recall, and hopefully promote, an older combinatorial min–max equality called the Coflow Theorem. Let G be a digraph. For each edge e of G, let de be a non-negative integer. The capacity d(C) of a dicircuit C means the sum of the de’s of the edges in C. An instance of the Coflow Theorem (1982) [2,3] says: Theorem 1. The maximum cardinality of a subset S of the vertices of G such that each dicircuit C of G contains at most d(C) members of S equals the minimum of the sum of the capacities of any subset H of dicircuits of G plus the number of vertices of G which are not in a dicircuit of H.
    [Show full text]
  • A. Schrijver, Honorary Dmath Citation (PDF)
    A. Schrijver, Honorary D. Math Citation Honorary D. Math Citation for Lex Schrijver University of Waterloo Convocation, June, 2002 Mr. Chancellor, I present Alexander Schrijver. One of the world's leading researchers in discrete optimization, Alexander Schrijver is also recognized as the subject's foremost scholar. A typical problem in discrete optimization requires choosing the best solution from a large but finite set of possibilities, for example, the best order in which a salesperson should visit clients so that the route travelled is as short as possible. While ideally we would like to have an efficient procedure to find the best solution, a famous result of the 1970s showed that for very many discrete optimization problems, there is little hope to compute the best solution quickly. In 1981, Alexander Schrijver and his co-workers, Groetschel and Lovasz, revolutionized the field by providing a powerful general tool to identify problems for which efficient procedures do exist. Professor Schrijver's record of establishing groundbreaking results is complemented by an almost legendary reputation for finding clearer, more compact derivations of results of others. This ability, together with high standards of mathematical rigour and historical accuracy, has made him the leading scholar in discrete optimization. His 1986 book, Theory of Linear and Integer Programming, is a landmark, and his forthcoming three- volume work on combinatorial optimization will certainly become one as well. Alexander Schrijver was born and educated in Amsterdam. Since 1989 he has worked at CWI, the National Research Institute for Mathematics and Computer Science of the Netherlands. He is also Professor of Mathematics at the University of Amsterdam.
    [Show full text]
  • Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 11 —
    Submodular Functions, Optimization, and Applications to Machine Learning | Spring Quarter, Lecture 11 | http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/ Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes May 9th, 2016 f (A) + f (B) f (A B) + f (A B) Clockwise from top left:v Lásló Lovász Jack Edmonds ∪ ∩ Satoru Fujishige George Nemhauser ≥ Laurence Wolsey = f (A ) + 2f (C) + f (B ) = f (A ) +f (C) + f (B ) = f (A B) András Frank r r r r Lloyd Shapley ∩ H. Narayanan Robert Bixby William Cunningham William Tutte Richard Rado Alexander Schrijver Garrett Birkho Hassler Whitney Richard Dedekind Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F1/59 (pg.1/60) Logistics Review Cumulative Outstanding Reading Read chapters 2 and 3 from Fujishige's book. Read chapter 1 from Fujishige's book. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F2/59 (pg.2/60) Logistics Review Announcements, Assignments, and Reminders Homework 4, soon available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments) Homework 3, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (5/2) at 11:55pm. Homework 2, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (4/18) at 11:55pm. Homework 1, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday (4/8) at 11:55pm. Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https: //canvas.uw.edu/courses/1039754/discussion_topics)).
    [Show full text]
  • Curriculum Vitae Martin Groetschel
    MARTIN GRÖTSCHEL detailed information at http://www.zib.de/groetschel Date / Place of birth: Sept. 10, 1948, Schwelm, Germany Family: Married since 1976, 3 daughters Affiliation: Full Professor at President of Technische Universität Berlin (TU) Zuse Institute Berlin (ZIB) Institut für Mathematik Takustr. 7 Str. des 17. Juni 136 D-14195 Berlin, Germany D-10623 Berlin, Germany Phone: +49 30 84185 210 Phone: +49 30 314 23266 E-mail: [email protected] Selected (major) functions in scientific organizations and in scientific service: Current functions: since 1999 Member of the Executive Committee of the IMU since 2001 Member of the Executive Board of the Berlin-Brandenburg Academy of Science since 2007 Secretary of the International Mathematical Union (IMU) since 2011 Chair of the Einstein Foundation, Berlin since 2012 Coordinator of the Forschungscampus Modal Former functions: 1984 – 1986 Dean of the Faculty of Science, U Augsburg 1985 – 1988 Member of the Executive Committee of the MPS 1989 – 1996 Member of the Executive Committee of the DMV, President 1992-1993 2002 – 2008 Chair of the DFG Research Center MATHEON "Mathematics for key technologies" Scientific vita: 1969 – 1973 Mathematics and economics studies (Diplom/master), U Bochum 1977 PhD in economics, U Bonn 1981 Habilitation in operations research, U Bonn 1973 – 1982 Research Assistant, U Bonn 1982 – 1991 Full Professor (C4), U Augsburg (Chair for Applied Mathematics) since 1991 Full Professor (C4), TU Berlin (Chair for Information Technology) 1991 – 2012 Vice president of Zuse Institute Berlin (ZIB) since 2012 President of ZIB Selected awards: 1982 Fulkerson Prize of the American Math. Society and Math. Programming Soc.
    [Show full text]
  • Basic Polyhedral Theory 3
    BASIC POLYHEDRAL THEORY VOLKER KAIBEL A polyhedron is the intersection of finitely many affine halfspaces, where an affine halfspace is a set ≤ n H (a, β)= x Ê : a, x β { ∈ ≤ } n n n Ê Ê for some a Ê and β (here, a, x = j=1 ajxj denotes the standard scalar product on ). Thus, every∈ polyhedron is∈ the set ≤ n P (A, b)= x Ê : Ax b { ∈ ≤ } m×n of feasible solutions to a system Ax b of linear inequalities for some matrix A Ê and some m ≤ n ′ ′ ∈ Ê vector b Ê . Clearly, all sets x : Ax b, A x = b are polyhedra as well, as the system A′x = b∈′ of linear equations is equivalent{ ∈ the system≤ A′x }b′, A′x b′ of linear inequalities. A bounded polyhedron is called a polytope (where bounded≤ means− that≤ there − is a bound which no coordinate of any point in the polyhedron exceeds in absolute value). Polyhedra are of great importance for Operations Research, because they are not only the sets of feasible solutions to Linear Programs (LP), for which we have beautiful duality results and both practically and theoretically efficient algorithms, but even the solution of (Mixed) Integer Linear Pro- gramming (MILP) problems can be reduced to linear optimization problems over polyhedra. This relationship to a large extent forms the backbone of the extremely successful story of (Mixed) Integer Linear Programming and Combinatorial Optimization over the last few decades. In Section 1, we review those parts of the general theory of polyhedra that are most important with respect to optimization questions, while in Section 2 we treat concepts that are particularly relevant for Integer Programming.
    [Show full text]
  • The Travelling Preacher, Projection, and a Lower Bound for the Stability Number of a Graph$
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Optimization 5 (2008) 290–292 www.elsevier.com/locate/disopt The travelling preacher, projection, and a lower bound for the stability number of a graph$ Kathie Camerona,∗, Jack Edmondsb a Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5 b EP Institute, Kitchener, Ontario, Canada N2M 2M6 Received 9 November 2005; accepted 27 August 2007 Available online 29 October 2007 In loving memory of George Dantzig Abstract The coflow min–max equality is given a travelling preacher interpretation, and is applied to give a lower bound on the maximum size of a set of vertices, no two of which are joined by an edge. c 2007 Elsevier B.V. All rights reserved. Keywords: Network flow; Circulation; Projection of a polyhedron; Gallai’s conjecture; Stable set; Total dual integrality; Travelling salesman cost allocation game 1. Coflow and the travelling preacher An interpretation and an application prompt us to recall, and hopefully promote, an older combinatorial min–max equality called the Coflow Theorem. Let G be a digraph. For each edge e of G, let de be a non-negative integer. The capacity d(C) of a dicircuit C means the sum of the de’s of the edges in C. An instance of the Coflow Theorem (1982) [2,3] says: Theorem 1. The maximum cardinality of a subset S of the vertices of G such that each dicircuit C of G contains at most d(C) members of S equals the minimum of the sum of the capacities of any subset H of dicircuits of G plus the number of vertices of G which are not in a dicircuit of H.
    [Show full text]
  • Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 12 —
    Submodular Functions, Optimization, and Applications to Machine Learning | Spring Quarter, Lecture 12 | http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/ Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes May 11th, 2016 f (A) + f (B) f (A B) + f (A B) Clockwise from top left:v Lásló Lovász Jack Edmonds ∪ ∩ Satoru Fujishige George Nemhauser ≥ Laurence Wolsey = f (A ) + 2f (C) + f (B ) = f (A ) +f (C) + f (B ) = f (A B) András Frank r r r r Lloyd Shapley ∩ H. Narayanan Robert Bixby William Cunningham William Tutte Richard Rado Alexander Schrijver Garrett Birkho Hassler Whitney Richard Dedekind Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F1/47 (pg.1/56) Logistics Review Cumulative Outstanding Reading Read chapters 2 and 3 from Fujishige's book. Read chapter 1 from Fujishige's book. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F2/47 (pg.2/56) Logistics Review Announcements, Assignments, and Reminders Homework 4, soon available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments) Homework 3, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (5/2) at 11:55pm. Homework 2, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (4/18) at 11:55pm. Homework 1, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday (4/8) at 11:55pm. Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https: //canvas.uw.edu/courses/1039754/discussion_topics)).
    [Show full text]
  • A Course in Combinatorial Optimization
    A Course in Combinatorial Optimization Alexander Schrijver CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands. March 23, 2017 copyright c A. Schrijver Contents 1. Shortest paths and trees 5 1.1. Shortest paths with nonnegative lengths 5 1.2. Speeding up Dijkstra’s algorithm with heaps 9 1.3. Shortest paths with arbitrary lengths 12 1.4. Minimum spanning trees 19 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming 23 2.1. Convex sets 23 2.2. Polytopes and polyhedra 25 2.3. Farkas’ lemma 30 2.4. Linear programming 33 3. Matchings and covers in bipartite graphs 39 3.1. Matchings, covers, and Gallai’s theorem 39 3.2. M-augmenting paths 40 3.3. K˝onig’s theorems 41 3.4. Cardinality bipartite matching algorithm 45 3.5. Weighted bipartite matching 47 3.6. The matching polytope 50 4. Menger’s theorem, flows, and circulations 54 4.1. Menger’s theorem 54 4.2. Flows in networks 58 4.3. Finding a maximum flow 60 4.4. Speeding up the maximum flow algorithm 65 4.5. Circulations 68 4.6. Minimum-cost flows 70 5. Nonbipartite matching 78 5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 78 5.2. Cardinality matching algorithm 81 5.3. Weighted matching algorithm 85 5.4. The matching polytope 91 5.5. The Cunningham-Marsh formula 94 6. Problems, algorithms, and running time 97 6.1. Introduction 97 6.2. Words 98 6.3.
    [Show full text]
  • A New Column for Optima Structure Prediction and Global Optimization
    76 o N O PTIMA Mathematical Programming Society Newsletter MARCH 2008 Structure Prediction and A new column Global Optimization for Optima by Alberto Caprara Marco Locatelli Andrea Lodi Dip. Informatica, Univ. di Torino (Italy) Katya Scheinberg Fabio Schoen Dip. Sistemi e Informatica, Univ. di Firenze (Italy) This is the first issue of 2008 and it is a very dense one with a Scientific February 26, 2008 contribution on computational biology, some announcements, reports of “Every attempt to employ mathematical methods in the study of chemical conferences and events, the MPS Chairs questions must be considered profoundly irrational and contrary to the spirit in chemistry. If mathematical analysis should ever hold a prominent place Column. Thus, the extra space is limited in chemistry — an aberration which is happily almost impossible — it but we like to use few additional lines would occasion a rapid and widespread degeneration of that science.” for introducing a new feature we are — Auguste Comte particularly happy with. Starting with Cours de philosophie positive issue 76 there will be a Discussion Column whose content is tightly related “It is not yet clear whether optimization is indeed useful for biology — surely biology has been very useful for optimization” to the Scientific contribution, with ­ — Alberto Caprara a purpose of making every issue of private communication Optima recognizable through a special topic. The Discussion Column will take the form of a comment on the Scientific 1 Introduction contribution from some experts in Many new problem domains arose from the study of biological and the field other than the authors or chemical systems and several mathematical programming models an interview/discussion of a couple as well as algorithms have been developed.
    [Show full text]
  • Theory of Linear and Integer Programming Alexander Schrijver
    To purchase this product, please visit https://www.wiley.com/en-gb/9780471982326 Theory of Linear and Integer Programming Alexander Schrijver Paperback 978-0-471-98232-6 April 1998 £82.75 DESCRIPTION Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination,
    [Show full text]
  • Curriculum Vitae Martin Groetschel
    Curriculum Vitae Martin Grötschel detailed information at http://www.zib.de/groetschel Date / Place of birth: September 10, 1948, Schwelm, Germany Family: Married, 3 daughters Affiliation and current positions: Full Professor at Vice President of Technische Universität Berlin (TU) Konrad-Zuse-Zentrum Institut für Mathematik für Informationstechnik Berlin (ZIB) Str. des 17. Juni 136 Takustr. 7 D-10623 Berlin, Germany D-14195 Berlin, Germany Phone: +49 30 84185 210 E-mail: [email protected] Scientific vita: 1969 – 1973 Mathematics and economics studies, U Bochum 1977 PhD, U Bonn 1981 Habilitation, U Bonn 1973 – 1982 Research Assistant, U Bonn 1982 – 1991 Full Professor, U Augsburg (Chair for Applied Mathematics) since 1991 Full Professor at TU Berlin, Inst. of Mathematics, and Vice President of ZIB since 2002 Chair of the DFG Research Center MATHEON "Mathematics for key technologies" Selected awards: 1978 Prize of U Bonn for the best dissertation of the preceding academic year 1982 Fulkerson Prize of the American Math. Society and Math. Programming Soc. (MPS) 1990 Karl Heinz Beckurts Prize (for technology transfer to industry) 1991 George B. Dantzig Prize of the MPS and the Soc. for Ind. and Appl. Math. (SIAM) 1995 Leibniz Prize of the German Research Foundation (DFG) 1998 Honorary Member of the German Mathematical Society (DMV) 1999 Scientific Prize of the German Association of Operations Research (GOR) 2004 EURO Gold Medal (EURO - The Ass. of European Operational Research Societies) Membership in scientific academies: 1995 Member of the
    [Show full text]