ORIGINAL ARTICLE ASTHMA Exhaled volatile organic compounds as markers for medication use in asthma Paul Brinkman1, Waqar M. Ahmed2, Cristina Gómez 3,4, Hugo H. Knobel5, Hans Weda 6, Teunis J. Vink6, Tamara M. Nijsen6, Craig E. Wheelock 4, Sven-Erik Dahlen3, Paolo Montuschi7, Richard G. Knowles8, Susanne J. Vijverberg1, Anke H. Maitland-van der Zee1, Peter J. Sterk1 and Stephen J. Fowler 2,9 on behalf of the U-BIOPRED Study Group10 Affiliations: 1Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. 2Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. 3Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden. 4Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 5Philips Signify, Eindhoven, The Netherlands. 6Philips Research, Eindhoven, The Netherlands. 7Dept of Pharmacology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. 8Knowles Consulting, Stevenage Bioscience Catalyst, Stevenage, UK. 9Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 10The list of U-BIOPRED Study Group contributors can be found in the supplementary material. Correspondence: Paul Brinkman, Dept of Respiratory Medicine, F5-259, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail:
[email protected] @ERSpublications Exhaled volatile organic compounds can be linked to urinary traces of salbutamol and oral corticosteroids. This suggests that breathomics qualifies for development into a point-of-care tool for monitoring asthma drug level changes.