Effect of Habitat Structure on Reproduction and Prey Capture of Pinguicula Lutea a Rare Carnivorous Plant

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Habitat Structure on Reproduction and Prey Capture of Pinguicula Lutea a Rare Carnivorous Plant Effect of Habitat Structure on Reproduction and Prey Capture of Pinguicula lutea a Rare Carnivorous Plant Samantha B. Primer, University of Illinois (UIUC) Brenda Molano-Flores, Illinois Natural History Survey Jenna Annis, Eastern Illinois University Janice Coons, Eastern Illinois University Mary Ann Feist, University of Wisconsin-Madison Habitat Modification TIME Habitat Modification Plant-Insect Interactions Plant-Insect Interactions Carnivorous Plants “This plant, commonly called Venus’ fly-trap…is one of the most wonderful in the world.” Carnivorous Plants “This plant, commonly called Venus’ fly-trap…is one of the most wonderful in the world.” …But So Much More Pinguicula lutea Family: Lentibulariaceae Common Name: Yellow Butterwort Status: Threatened in FL Habitat Structure Maintained Grassy Woody • Cover class determined (% cover) using Daubenmire method • At each site, 5 1m2 quadrats were established along alternating sides of 30m transect. • At each site, 10 buds were randomly marked, monitored for fruit development. Ellison graph instead Pinguicula spp. Characteristics anthers receptacle stigma nectar spur Ellison graph instead Pinguicula spp. Characteristics leaf margin sessile gland stalked gland Overarching Question Does habitat structure affect plant-insect interactions of Pinguicula lutea? Overarching Question Does habitat structure affect plant-insect interactions of Pinguicula lutea? Background Information: 1. Determine reproductive ecology 2. Survey arthropod abundance and prey capture Reproductive Ecology Previous Research Breeding System Pollinator Observations Pollen : Ovule Low High Reproductive Ecology Summary Floral Morphology Suggest Insect vector Breeding System Self-compatible, pollen vector required Pollinator Observations Insect vector on video Pollen to Ovule Ratio Consistent with facultative selfing Prey Community Previous Research Treat. 1876. The Harper’s Monthly. Gibson.1991. American Midland Naturalist. Prey Community Summary Prey Capture Main prey are Collembola and Diptera Collembola is most common Arthropod Availability Collembola and Diptera most abundant Some available Diptera too large trap Overarching Question Does habitat structure affect reproduction and prey capture of Pinguicula lutea? Background Information: 1. Determine reproductive ecology 2. Survey arthropod abundance and prey capture 1. Determine reproduction and prey capture in three habitat structures Cover class determined (% cover) At each site, 5 1m2 quadrats were established along alternating sides of 30m transect. • Reproduction – Fruit Set – Seed Set • Prey Capture Determining Structure • Prey Availability Vegetation Surveys • Total sites = 13 1m2 quadrats established Cover class determined (% cover) Quadrats = 5 Sites = 13 Cover class determined (% cover) At each site, 5 1m2 quadrats were established along alternating sides of 30m transect. • Reproduction – Fruit Set – Seed Set • Prey Capture Determining Structure • Prey Availability • Total sites = 13 Maintained Grassy Woody Reproduction Fruit Set Seed Set N = 10 Sites = 13 Fruit Set Final Fruit Set 1 0.8 0.6 0.4 0.2 0 Proportion of Fruits Formed Proportion maintained grassy woody ANOVA F = 0.57, P = 0.58 Seed Set Seed Set 0.95 0.9 0.85 0.8 0.75 maintained grassy woody Proportion of Seeds Set Proportion ANOVA: F = 1.54, p = 0.22 Habitat Structure on Reproduction Habitat structure does not affect reproductive success High fruit set High seed set Prey Community Assessment Prey Capture Arthropod Availability N = 5 Sites = 13 12 Arthropod Availability 10 8 12 Maintained 6 10 Grassy 4 8 Woody Maintained 2 6 Grassy 0 4 Woody Total Colembola Diptera Mean # Arthropods 2 0 Total Collembola Diptera ANOVA: F = 4.66, p = 0.01 F = 4.3, p = 0.02 F = 38.7,p <0.001 5 Prey Capture 4 3 5 Maintained 2 4 Grassy Woody 1 3 Maintained 2 Grassy 0 Woody Total 1 Collembola Diptera Mean # Arthropods 0 Total Collembola Diptera ANOVA: F = 26.0, p <0.001 F = 30.18, p <0.001 F = 16.45, p <0.001 Habitat Structure on Prey Capture Habitat structure does affect prey capture and availability Microclimatic Conditions Light Availability Temperature Humidity Habitat Structure on Prey Capture Habitat structure does affect prey capture and availability Microclimatic Conditions Light Availability Temperature Humidity Arthropods Trapping Mechanism Habitat Structure on Prey Capture Microclimate affecting insects Microclimate affecting trapping mechanism Temperature humidity moisture F Zamora.1995. Oikos. Habitat Structure on Prey Capture So I’ve established the patterns of these plant insect interactions In Summary…. • First comprehensive study of plant-insect interactions for SE Pinguicula spp. First comprehensive study of plant-insect interactions for SE Pinguicula spp. • In a fire dependent community these findings provide insight into how this species response to changes in habitat structure… i.e. What management or lack of management could mean for this species • Provides evidence that’s presents or absence of management does not seems to have an impact in terms of reproduction; however there are differences in terms of prey capture. In Summary…. First comprehensive study of plant-insect interactions for SE Pinguicula spp. Provides insight into how this species respond to • In a fire dependent community these findings provide insight into changeshow this in species habitat responds structure to changes in habitat structure… i.e. What management or lack of management could mean for this species • Provides evidence that’s presents or absence of management does not seems to have an impact in terms of reproduction; however there are differences in terms of prey capture. In Summary…. First comprehensive study of plant-insect interactions for SE Pinguicula spp. Provides insight into how this species responds to changes in habitat structure Presence/absence of management may impact prey capture. Acknowledgements COAUTHORS FIELD ASSISSTANTS/ HELP FLORIDA FOREST SERVICE Brenda Molano-Flores Caroline George Michael Jenkins Jenna Annis Jean Mendelkoch David Morse Janice Coons Kevin Christman Mary Ann Feist Melissa Primer US FISH AND WILDLIFE Bill Booth Vivian Negron-Ortiz BMF LAB Robin Kennedy Danielle Ruffatto BUFFER PRESERVE David N. Zaya TYNDALL AIRFORCE BASE Dylan Shoemaker Ian Pearse Wendy Jones Barry Townsend Charlie Helm Sandra Chafin ST. JOE COMPANY Allix North UNDERGRADUATE HELP Jim Moyers Lisa Duglecki Marialicia Chavez Max & Pat Prucell MASTER NATURALISTS Dave & Joy Peterson .
Recommended publications
  • Foraging Modes of Carnivorous Plants Aaron M
    Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191066 Foraging modes of carnivorous plants Aaron M. Ellison* Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory.
    [Show full text]
  • Reports Ecological Analyses of Relationships Between Essen- and Frost 1991, Ellison and Gotelli 2002)
    Ecology, 86(7), 2005, pp. 1737±1743 q 2005 by the Ecological Society of America PREY ADDITION ALTERS NUTRIENT STOICHIOMETRY OF THE CARNIVOROUS PLANT SARRACENIA PURPUREA AMY E. WAKEFIELD,1 NICHOLAS J. GOTELLI,1,3 SARAH E. WITTMAN,1 AND AARON M. ELLISON2 1University of Vermont, Burlington, Vermont 05405 USA 2Harvard University, Harvard Forest, P.O. Box 68, Petersham, Massachusetts 01366 USA Abstract. The carnivorous pitcher plant Sarracenia purpurea receives nutrients from both captured prey and atmospheric deposition, making it a good subject for the study of ecological stoichiometry and nutrient limitation. We added prey in a manipulative ®eld experiment and measured nutrient accumulation in pitcher-plant tissue and pitcher liquid, as well as changes in plant morphology, growth, and photosynthetic rate. Prey addition had no effect on traditional measures of nutrient limitation (leaf morphology, growth, or pho- tosynthetic rate). However, stoichiometric measures of nutrient limitation were affected, as the concentration of both N and P in the leaf tissue increased with the addition of prey. Pitcher ¯uid pH and nitrate concentration did not vary among treatments, although dissolved oxygen levels decreased and ammonia levels increased with prey addition. Ratios of N:P, N:K, and K:P in pitcher-plant tissues suggest that prey additions shifted these carnivorous plants from P limitation under ambient conditions to N limitation with the addition of prey. Key words: carnivorous plants; ®eld experiment; K:P ratio; N:K ratio; N:P ratio; nitrogen; nutrient limitation; phosphorus; Sarracenia purpurea; stoichiometry. INTRODUCTION many species alter production or morphology of car- nivorous organs in response to nutrient input (Knight Reports Ecological analyses of relationships between essen- and Frost 1991, Ellison and Gotelli 2002).
    [Show full text]
  • Carnivorous Plant Newsletter V47 N2 June 2018
    New Cultivars Keywords: Pinguicula ‘Riva’, Drosera binata ‘Ghost’, Nepenthes ampullaria ‘Black Widow’, Nepenthes ampullaria ‘Caramel Candy Stripe’, Nepenthes ampullaria ‘Lime Delight’, Nepenthes ampullaria ‘Chocolate Delight’, Nepenthes ampullaria ‘Cherry Delight’, Nepenthes ampullaria ‘Bronze Delight’. Pinguicula ‘Riva’ Submitted: 22 February 2018 The parents of Pinguicula ‘Riva’ (Fig. 1) are P. agnata (with scented flowers) × P. gigantea (to the best of my knowledge; the second parent may have been a P. gigantea × P. emarginata). This cross was done and the resulting seed germinated in late 2013 by me in San Francisco, California. This particular plant made its specialness apparent after about 2 years of growth under lights when it began flowering. The flower is approximately 2 cm wide by 2.5 cm long and is white with a bright yellow center which is surrounded by a flaring purple ring. The petals are 1 cm long, 7-9 mm wide, slightly ruffled, and the top 2 petals have irregular slightly serrated upper margins. The spur is 12 mm long, green and straight. The flower stalk is 18-20 cm long. And, the flower is scented, quite heavily in warmer conditions. The flower does not produce pollen or seed so it is sterile. The leaves of the plant are nice as well, ranging from 4-5.5 cm long and about 3 cm wide. The leaf shape is oblong egg-shaped with the rounded end distal from the central growth point. The color of the leaves ranges from pale green with burgundy tinting and margins to muted burgundy with green undertones. The margins of the leaf are slightly upturned.
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Carnivorous Plant Newsletter of Australia
    Volume 6 September, 1980. Registered as a Publication, Category B. Page 6 CPNA Page 1 EDITORS, : : : : KEN HATLEY. SUSAN HATLEY. CORRESPONDENCE ADDRESSED TO : C.P.N.A. Wandena Rd, B~allsbrook East. West Australia. 6084. Published Quarterly by C.P.N.A. Subscriptions $6-OO Annually. Back copies issued to late subscribers. ........................................................................... FROM THE EDITORS. We would like to start this issue with an apology for its late arrival to you. Unfortunately, we experienced an unexpected delay in the arrival of replacment parts for the copying equipment. The good news this issue is of course that spring is upon us again, and with it the regrowth of our dormant varieties ready to come forward and show off their beauty for yet another year. The response for articles for the newsletter is dissappointing to say the least. There is enough experienced c.p. growers in Australia capable of contributing write-ups to ensure the success of the CPNA for many years to come, but if the lack of interest continues the newsletter is doomed to failure. To put it bluntly, if you want your newsletter to continue then get behind it and give it your support. Good Growing, Editors. ........................................................................... ........................................................................... FRONT COVER - DROSERA GLANDULIGERA, HABITAT WEST AUSTRALIA. Vol 6 CPNA Page 2 C.P. LETTERBOX. Received a letter from Mrs I.D. Anderson of 23 Harrow St, Launceston, Tasmania 7250 asking of other members in Tasmania. As we don't now publish a list of subscribers we leave it to any member in her area to drop a line and swap C.P.
    [Show full text]
  • Assessing Genetic Diversity for the USA Endemic Carnivorous Plant Pinguicula Ionantha R.K. Godfrey (Lentibulariaceae)
    Conserv Genet (2017) 18:171–180 DOI 10.1007/s10592-016-0891-9 RESEARCH ARTICLE Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae) 1 1 2 3 David N. Zaya • Brenda Molano-Flores • Mary Ann Feist • Jason A. Koontz • Janice Coons4 Received: 10 May 2016 / Accepted: 30 September 2016 / Published online: 18 October 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Understanding patterns of genetic diversity and data; the dominant cluster at each site corresponded to the population structure for rare, narrowly endemic plant spe- results from PCoA and Nei’s genetic distance analyses. cies, such as Pinguicula ionantha (Godfrey’s butterwort; The observed patterns of genetic diversity suggest that Lentibulariaceae), informs conservation goals and can although P. ionantha populations are isolated spatially by directly affect management decisions. Pinguicula ionantha distance and both natural and anthropogenic barriers, some is a federally listed species endemic to the Florida Pan- gene flow occurs among them or isolation has been too handle in the southeastern USA. The main goal of our recent to leave a genetic signature. The relatively low level study was to assess patterns of genetic diversity and of genetic diversity associated with this species is a con- structure in 17 P. ionantha populations, and to determine if cern as it may impair fitness and evolutionary capability in diversity is associated with geographic location or popu- a changing environment. The results of this study provide lation characteristics. We scored 240 individuals at a total the foundation for the development of management prac- of 899 AFLP markers (893 polymorphic markers).
    [Show full text]
  • The Microbial Phyllogeography of the Carnivorous Plant Sarracenia Alata
    Microb Ecol (2011) 61:750–758 DOI 10.1007/s00248-011-9832-9 PLANT MICROBE INTERACTIONS The Microbial Phyllogeography of the Carnivorous Plant Sarracenia alata Margaret M. Koopman & Bryan C. Carstens Received: 6 November 2010 /Accepted: 15 February 2011 /Published online: 24 March 2011 # Springer Science+Business Media, LLC 2011 Abstract Carnivorous pitcher plants host diverse microbial Introduction communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary process- The integration of ecosystem genetics, phylogenetics, and es that influence the spatial diversity of microbial commu- community ecology has provided important insights into nities. Using next-generation sequencing of environmental the diversity, assembly, evolution, and functionality of samples, we surveyed microbial communities from 29 communities [1–5]. By exploring ecosystems in an evolu- pitcher plants (Sarracenia alata) and compare community tionary framework, investigators can measure genetic composition with plant genetic diversity in order to interactions across variable temporal and spatial scales explore the influence of historical processes on the and gain insight into fundamental processes such as food population structure of each lineage. Analyses reveal web dynamics and nutrient cycling [1, 3, 4]. Studies that there is a core S. alata microbiome, and that it is integrating these fields initially focused on the genetics of similar in composition to animal gut microfaunas. The plant species that supply a variety of important resources spatial structure of community composition in S. alata and environmental structure to other organisms in the (phyllogeography) is congruent at the deepest level with ecosystem [6]. An intriguing extension of these studies, the dominant features of the landscape, including the and an important opportunity for community geneticists, is Mississippi river and the discrete habitat boundaries that to further investigate community level responses to host– the plants occupy.
    [Show full text]
  • Carnivorous Plant Newsletter V44 N4 December 2015
    Technical Refereed Contribution Soil pH values at sites of terrestrial carnivorous plants in south-west Europe Lubomír Adamec • Institute of Botany of the Czech Academy of Sciences • Dukelská 135 • CZ-379 82 Trˇebonˇ • Czech Republic • [email protected] Keywords: Soil water pH, neutral soils, Pinguicula spp., Drosera intermedia, Drosophyllum lusitanicum. Abstract: Although the majority of terrestrial carnivorous plants grow in acidic soils at a pH of 3.5-5.5, there are many dozens of carnivorous species, mostly mountainous or rocky Pinguicula species, which grow preferen- tially or strictly in neutral or slightly alkaline soils at pHs between 7-8. Knowledge of an optimum soil pH value and an amplitude of this factor may be important not only for understanding the ecology of various species and their conservation, but also for successfully growing them. I report soil pH values at microsites of 15 terrestrial carnivorous plant species or subspecies in SW Europe. Introduction The majority of terrestrial carnivorous plants grow in wetlands such as peat bogs, fens, wet meadows, or wet clayish sands. The soils have usually low available mineral nutrient content (N, P, K, Ca, Mg), are hypoxic or anoxic and usually acidic (Juniper et al. 1989; Adamec 1997; Rice 2006). Unlike mineral nutritional character- istics of these soils, which have commonly been studied and related to carnivorous plant growth in the field or greenhouse experiments and which have also been published (for the review see Adamec 1997), relatively very little is known about the relationship between soil pH and growth of terrestrial carnivorous plants. Although some limited knowledge of soil pH at habitats of carnivorous plants or in typical substrates exist among botanists and growers (e.g., Roberts & Oosting 1958; Aldenius et al.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Phylogeny and Biogeography of the Carnivorous Plant Family Droseraceae with Representative Drosera Species From
    F1000Research 2017, 6:1454 Last updated: 10 AUG 2021 RESEARCH ARTICLE Phylogeny and biogeography of the carnivorous plant family Droseraceae with representative Drosera species from Northeast India [version 1; peer review: 1 approved, 1 not approved] Devendra Kumar Biswal 1, Sureni Yanthan2, Ruchishree Konhar 1, Manish Debnath 1, Suman Kumaria 2, Pramod Tandon2,3 1Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 2Department of Botany, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 3Biotech Park, Jankipuram, Uttar Pradesh, 226001, India v1 First published: 14 Aug 2017, 6:1454 Open Peer Review https://doi.org/10.12688/f1000research.12049.1 Latest published: 14 Aug 2017, 6:1454 https://doi.org/10.12688/f1000research.12049.1 Reviewer Status Invited Reviewers Abstract Background: Botanical carnivory is spread across four major 1 2 angiosperm lineages and five orders: Poales, Caryophyllales, Oxalidales, Ericales and Lamiales. The carnivorous plant family version 1 Droseraceae is well known for its wide range of representatives in the 14 Aug 2017 report report temperate zone. Taxonomically, it is regarded as one of the most problematic and unresolved carnivorous plant families. In the present 1. Andreas Fleischmann, Ludwig-Maximilians- study, the phylogenetic position and biogeographic analysis of the genus Drosera is revisited by taking two species from the genus Universität München, Munich, Germany Drosera (D. burmanii and D. Peltata) found in Meghalaya (Northeast 2. Lingaraj Sahoo, Indian Institute of India). Methods: The purposes of this study were to investigate the Technology Guwahati (IIT Guwahati) , monophyly, reconstruct phylogenetic relationships and ancestral area Guwahati, India of the genus Drosera, and to infer its origin and dispersal using molecular markers from the whole ITS (18S, 28S, ITS1, ITS2) region Any reports and responses or comments on the and ribulose bisphosphate carboxylase (rbcL) sequences.
    [Show full text]
  • Pinguicula Vulgaris L. Butterwortbutterwort, Page 
    Pinguicula vulgaris L. butterwortbutterwort, Page 1 State Distribution Photo by Susan R. Crispin Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern Recognition: Pinguicula vulgaris is a small, herbaceous, insectivorous perennial with rosettes of 3-6 Global and state rank: G5/S3 distinctly yellowish-green leaves. The blunt, oblong- ovate to elliptic leaves, which narrow to the base, range Other common names: common butterwort, bog- to ca. 8 cm in length, curling slightly inward along violet, violet butterwort their upper margins. The upper leaf surface is covered with numerous enzyme-secreting glands that aid in Family: Lentibulariaceae (bladderwort family) the breakdown and digestion of small insects, and give the leaves a sticky-greasy feel when touched. This Range: Butterwort is a circumpolar species ranging slimy, watery surface also serves to attract and capture around the world in temperate and boreal regions. It is insect prey. The spurred purple flowers are solitary of widespread occurrence from Europe through Siberia. on 1.5-12 cm long, leafless peduncles (stalks) and Elsewhere this species occurs in the Arctic from Alaska have a white spot at the mouth. In addition to a well to Canada and East Greenland, extending southward developed basal spur, the flowers have a 3-lobed upper in North America to northeast Minnesota, northwest lip and 2-lobed lower lip, thus superficially resembling a Wisconsin, and through the Lake Superior region east violet. A single rosette may have produce up to three or to New York and New England. It is considered rare more flowering stalks.
    [Show full text]
  • Disentangling Phylogenetic Relationships in a Hotspot of Diversity: the Butterworts (Pinguicula L., Lentibulariaceae) Endemic to Italy
    RESEARCH ARTICLE Disentangling Phylogenetic Relationships in a Hotspot of Diversity: The Butterworts (Pinguicula L., Lentibulariaceae) Endemic to Italy Olga De Castro1☯*, Michele Innangi2☯, Antonietta Di Maio1, Bruno Menale1, Gianluigi Bacchetta3, Mathias Pires4, Virgile Noble4, Giovanni Gestri5, Fabio Conti6, Lorenzo Peruzzi7 1 Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italy, 2 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy, 3 Centro Conservazione Biodiversità, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy, 4 Conservatoire Botanique National MeÂditerraneÂen, Hyères, France, a11111 5 Abitazione, Prato, Italy, 6 Scuola di Bioscienze e Medicina Veterinaria, Università di CamerinoÐCentro Ricerche Floristiche dell'Appennino, Parco Nazionale del Gran Sasso e Monti della Laga, Barisciano (L'Aquila), Italy, 7 Dipartimento di Biologia, Università degli Studi di Pisa, Pisa, Italy ☯ These authors contributed equally to this work. * [email protected], [email protected] OPEN ACCESS Abstract Citation: De Castro O, Innangi M, Di Maio A, Menale B, Bacchetta G, Pires M, et al. (2016) The genus Pinguicula (Lentibulariaceae) consists of about 100 carnivorous species, also Disentangling Phylogenetic Relationships known as butterworts. Eleven taxa are endemic to Italy, which represents a biodiversity hot- in a Hotspot of Diversity: The Butterworts spot for butterworts in Europe. The aim of our study was to provide a phylogenetic frame- (Pinguicula L., Lentibulariaceae) Endemic to Italy. PLoS ONE 11(12): e0167610. doi:10.1371/journal. work for the Italian endemics, in order to: a) investigate the relationships between species in pone.0167610 this group; b) evaluate their actual taxonomic value.
    [Show full text]