A Study of Short Term Rotational Variability in Tnos and Centaurs from Sierra Nevada Observatory

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Short Term Rotational Variability in Tnos and Centaurs from Sierra Nevada Observatory A&A 407, 1149–1155 (2003) Astronomy DOI: 10.1051/0004-6361:20030972 & c ESO 2003 Astrophysics A study of short term rotational variability in TNOs and Centaurs from Sierra Nevada Observatory J. L. Ortiz1,P.J.Guti´errez1;2, V. Casanova1,andA.Sota1 1 Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apt 3004, 18080 Granada, Spain 2 Laboratoire d’Astrophysique de Marseille, Traverse du Siphon, BP 8, 13376 Marseille Cedex 12, France Received 9 April 2003 / Accepted 19 June 2003 Abstract. Broad band CCD observations focused on short-term rotational variability have been carried out for six TNOs: 1999 TD10, 1999 TC36, 2000 EB173, (20000) Varuna, (28978) Ixion, 2002 CR46, and four Centaurs: 2000 QC243, 2001 PT13, 2002 PN34 and 2002 GO9 using the 1.5 m telescope at Sierra Nevada Observatory (Granada, Spain) since mid 2001. Three of the bodies exhibit periodic double-peaked lightcurves with amplitudes larger than 0.4 mag while another four show periodic variability with amplitudes below 0.20 mag. Basic physical properties of these objects can be derived or constrained from the observations. Here we present a summary of the main results obtained for these objects. Key words. minor planets, asteroids – Kuiper Belt 1. Introduction link needed to check heterogeneity of surfaces as suggested by spectroscopy data (Barucci et al. 2002; Lazzarin et al. 2003). Trans-Neptunian Objects (TNOs) and Centaurs are outer Solar However, time–resolved photometry requires considerable System minor bodies from which Jupiter family comets orig- observing time devoted to each object and therefore it is hard to inate. All these groups seem to share the same origin in carry out due to the difficulty of getting long observing runs in the Kuiper or Edgeworth-Kuiper Belt (e.g. Fern´andez 1980; large telescopes. Smaller telescopes can be used in longer runs, Duncan et al. 1988, etc.). At present, it is believed that these but restricted to sufficiently bright TNOs. objects are among the least evolved in the Solar System. In 2001, we started a CCD photometry program devoted Therefore, the study of these bodies will help us in understand- to studying the short–term variability of some of the bright- ing the formation and evolution of the Solar System. Many of est TNOs and Centaurs from Sierra Nevada observatory. This the current observational studies of TNOs and Centaurs are fo- paper summarizes part of the results already obtained by the cused on color photometry or spectroscopy (e.g. Jewitt & Luu ongoing program. 2001; Boehnhardt et al. 2002; Barucci et al. 2002; Hainaut & Delsanti 2002; Doressoundiram et al. 2002; etc.). By using sta- tistical analysis, most of these studies try to find likely correla- 2. Observations and data reduction tions between color trends and orbital parameters. The observations were carried out by means of the Instituto Other works related to TNOs and Centaurs are focused on the study of their short–term variability (e.g. Davies et al. de Astrof´ısica de Andaluc´ıa 1.5m telescope at Sierra Nevada Observatory, in Granada, Spain. One-week observing runs 1998; Hainaut et al. 2000; Guti´errez et al. 2001; Farnham 2001; were allocated in August 2001, September 2001, October 2001 Ortiz et al. 2002; Sheppard & Jewitt 2002; Bauer et al. 2002; Sekiguchi et al. 2002; Peixinho et al. 2002; etc.). These studies and February 2002, March 2002, May 2002 and August 2002, but weather or technical problems prevented us from observ- can give us hints on the shape, density and other basic physical properties of these bodies (e.g. Sheppard & Jewitt 2002) as well ing in some of the nights of each run. The bodies observed are as on the original size-shape distribution (Lacerda et al. 2003). listed in Table 1 along with other relevant data. The dates with usable data are also listed in Table 1. Besides, short-term variability studies of the largest members of the Kuiper Belt are very important because some knowl- As Centaurs and TNOs have typical drift rates ranging from edge on the rotational state is needed in order to apply the one to a few arcsecs per hour, we used the shortest exposure appropriate thermophysical models to derive the albedos of time possible in order not to get elongated images of either the these bodies. Also, accurate rotation periods can provide the object or the field stars (depending on whether the telescope is tracked at sidereal or nonsidereal rate respectively). An expo- Send offprint requests to: J. L. Ortiz, sure time of 100 s was short enough to avoid noticeable trailing e-mail: [email protected] under the best foreseeable seeing conditions, but long enough Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20030972 1150 J. L. Ortiz et al.: CCD photometry from Sierra Nevada Observatory Table 1. Dates and geometric data (range) of the objects observed. Object rh(AU) ∆ (AU) α(deg) No of images Observing dates TNOs 1999 TC36 31.3 30.57–30.49 1.30–1.14 205 13, 15, 17–20, AUG. (2001) 1999 TD10 12.7 11.75–11.77 0.86–1.10 450 23–26, OCT. (2001) 2000 EB173 29.6 29.18–28.71 1.72–0.87 503 9–10, FEB. (2002); 8–10, MAR. (2002) (2000 WR106) Varuna 43.1 42.33–43.34 0.81–0.83 343 8–9, FEB. (2002) (2001 KX76) Ixion 43.1 42.81–42.87 1.30–1.32 180 15, 17–19, AUG. (2001) 2002 CR46 18.1 17.37–17.40 2.15–2.23 190 8–10, MAR. (2002) Centaurs 2000 QC243 19.2 18.21–18.17 1.12–0.77 290 13, 15, 17–20, AUG. (2001) 2001 PT13 8.9 7.93–8.45 2.67–5.89 681 10–11, 13–14, SEP. (2001); 23–28, OCT. (2001) 2002 PN34 13.4 12.50–12.52 2.30-2.43 260 28–30, AUG. (2002) 2002 GO9 14.4 13.17-13.18 2.15–2.26 263 18–19, MAY (2002) so that the sky background was the dominating noise source. In “approximate V magnitude” in the plots presented here. The order to get a good enough signal to noise ratio, most of the ob- absolute calibration is irrelevant for this investigation, in which servations were obtained with no filter. Therefore, unless oth- short-term variability of the object is obtained by using the stars erwise noted, the observations consisted of sequences of 100 s in the field of view. integrations with no filter. The number of images obtained is The time-resolved observations were inspected for period- therefore very high, in the order of a few thousands. The typ- icities by means of the Lomb technique (Lomb 1976) as imple- ical seeing during the observations ranged from 1.1 arcsec to mented in Press et al. (1992). Typical 1σ errors in the period 2.5 arcsec, with median around 1.5 arcsec. A fast readout CCD determination for our typical four-day observing windows are was used in order not to spend large fractions of the nights read- in the order of 0.02 h (neglecting the interfering effects of the ing out the CCD. The CCD chip format is 1024 1024 pixels aliases). In the cases in which we were able to use longer time × and the total field of view is 7 arcmin 7 arcmin. The images frames, the period determination is more precise. The reference × were bias subtracted in the standard way and flat-fielded using stars were also inspected for short term variability but none was a flatfield frame (the median of a large set of dithered twilight found. images of the sky at blank fields). No cosmic ray removal al- gorithms were used and we simply rejected the few images in which a cosmic ray hit was close to the objects. Relative pho- 3. Results tometry using seven field stars was carried out by means of The main photometric results are listed by object and summa- Daophot routines. The synthetic aperture used was typically 8 rized in Table 2. to 12 pixels in diameter (the smallest possible in order to get the (20000) Varuna (formerly 2000 WR106). The short-term highest signal to noise). Care was taken not to introduce spuri- variability of this very large TNO has been studied by several ous signals of faint background stars or galaxies in the aperture. authors. Farnham (2001) found a 3:17 h 0:01 h periodicity and In cases where the TNOs or Centaurs were close to faint stars Jewitt & Sheppard (2002) reported a double-peaked± lightcurve or galaxies, the data were rejected. with a period of 6:3442 0:0002 h, consistent with the pre- Since the TNOs and Centaurs move relatively slowly, we vious observations. Our own± data, taken in coordination with were able to use the same field stars within each observing the IRAM-30 m radiotelescope in order to obtain a new deriva- run. The typical error bars of the individual 100 s integrations tion of Varuna’s albedo (Lellouch et al. 2002) are shown in are 0.15 mag for the faintest targets we observed, and around Fig. 1. The periodogram analysis of our data showed a clear 0.06 mag for the brightest ones. Both figures were considerably periodicity peak that implied a rotation period of 6:35 0:02 h, improved by averaging or “median averaging” the large amount which was consistent with the rotation period given by± Jewitt of relative photometry data points.
Recommended publications
  • Visible and Near-Infrared Colors of Transneptunian Objects and Centaurs from the Second ESO Large Program
    A&A 493, 283–290 (2009) Astronomy DOI: 10.1051/0004-6361:200810561 & c ESO 2008 Astrophysics Visible and near-infrared colors of Transneptunian objects and Centaurs from the second ESO large program F. E. DeMeo1, S. Fornasier1,2, M. A. Barucci1,D.Perna1,3,4, S. Protopapa5, A. Alvarez-Candal1, A. Delsanti1, A. Doressoundiram1, F. Merlin1, and C. de Bergh1 1 LESIA, Observatoire de Paris, 92195 Meudon Principal Cedex, France e-mail: [email protected] 2 Université de Paris 7 Denis Diderot, Paris, France 3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy 4 Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy 5 Max Planck Institute for Solar System Research, Lindau, Germany Received 10 July 2008 / Accepted 9 October 2008 ABSTRACT Aims. We investigate color properties and define or check taxonomic classifications of objects observed in our survey. Methods. All observations were performed between October 2006 and September 2007 at the European Southern Observatory 8 m Very Large Telescope, UT1 and UT2 at the Paranal Observatory in Chile. For visible photometry, we used the FORS1 instrument, and for near-infrared, ISAAC. Taxonomic classifications from the Barucci system were assigned using G-mode analysis. Results. We present photometric observations of 23 TNOs and Centaurs, nine of which have never been previously observed. Eighteen of these objects were assigned taxonomic classifications: six BB, four BR, two RR, and six that are given two or more categories due to insufficient data. Three objects that had been previously observed and classified, changed classes most likely due to surface vari- ation: 26375 (1999 DE9), 28978 (Ixion), and 32532 (Thereus).
    [Show full text]
  • Color Properties and Trends of the Transneptunian Objects
    Doressoundiram et al.: Color Properties 91 Color Properties and Trends of the Transneptunian Objects A. Doressoundiram Observatoire de Paris Hermann Boehnhardt Max-Planck Institute for Solar System Research Stephen C. Tegler Northern Arizona University Chad Trujillo Gemini Observatory The color of transneptunian objects (TNOs) is the first and basic information that can be easily obtained to study the surface properties of these faint and icy primitive bodies of the outer solar system. Multicolor broadband photometry is the only tool at the moment that al- lows characterization of the entire population that is relevant for statistical work. Using the colors available for more than 170 objects it is possible to get a first glance at the color distri- bution in the Edgeworth-Kuiper belt. First, results show that a wide color diversity character- izes the outer solar system objects. Transneptunian objects have surfaces showing dramatically different colors and spectral reflectances, from neutral to very red. At least one cluster of ob- jects with similar color and dynamical properties (the red, dynamically cold classical TNOs beyond 40 AU) could be identified. Furthermore, evidence for correlations between colors and orbital parameters for certain objects have been found at a high significance level. Both color diversity and anisotropy are important because they are diagnostic of some physical effects processing the surfaces of TNOs and/or some possible composition diversity. In this paper, we will review the current knowledge of the color properties of TNOs, describe the observed color distribution and trends within the Edgeworth-Kuiper belt, and address the problem of their possible origin.
    [Show full text]
  • Planet Definition
    Marin Erceg dipl.oec. CEO ORCA TEHNOLOGIJE http://www.orca-technologies.com Zagreb, 2006. Editor : mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Text review : dr.sc. Zlatko Renduli ć dipl.ing. mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Danijel Vukovi ć dipl.ing. zrakoplovstva Translation review : Dana Vukovi ć, prof. engl. i hrv. jez. i knjiž. Graphic and html design : mr.sc. Tino Jelavi ć dipl.ing. Publisher : JET MANGA Ltd. for space transport and services http://www.yuairwar.com/erceg.asp ISBN : 953-99838-5-1 2 Contents Introduction Defining the problem Size factor Eccentricity issue Planemos and fusors Clear explanation of our Solar system Planet definition Free floating planets Conclusion References Curriculum Vitae 3 Introduction For several thousand years humans were aware of planets. While sitting by the fire, humans were observing the sky and the stars even since prehistory. They noticed that several sparks out of thousands of stars were oddly behaving, moving around the sky across irregular paths. They were named planets. Definition of the planet at that time was simple and it could have been expressed by following sentence: Sparkling dot in the sky whose relative position to the other stars is continuously changing following unpredictable paths. During millenniums and especially upon telescope discovery, human understanding of celestial bodies became deeper and deeper. This also meant that people understood better the space and our Solar system and in this period we have accepted the following definition of the planet: Round objects orbiting Sun. Following Ceres and Asteroid Belt discoveries this definition was not suitable any longer, and as a result it was modified.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]
  • Polarization Phase Angle Dependence
    POLARIMETRIC PROPERTIES OF TRANSNEPTUNIAN OBJECTS AND CENTAURS Irina Belskaya LESIA, Observatoire de Paris, France Institute of Astronomy, Kharkiv National University, Ukraine POLARIZATION PHASE ANGLE DEPENDENCE Main-belt asteroids Geometry of the ground- based observations of distant objects is very limited: r 3 AU 19.5 10 AU 5.8 40 AU 1.4 Phase angle range for TNOs FIRST MEASUREMENTS OF POLARIZATION FOR A TNO 0.4 Pluto 1972 1979 Kelsey & Fix 1973 1980 0.2 1981 Breger & Cochran 1982 1988 Avramchuk et al. 1992 0.0 V~ 15 mag P, % -0.2 Telescopes: 1 m, 1.3 m, 2 m σP~0.03-0.05% -0.4 V (1979-1981) or without filters -0.6 0.0 0.5 1.0 1.5 2.0 Phase angle, deg - negative polarization - no evidence of polarization variations with rotation - no noticeable phase angle dependence • Pluto’s surface is microscopically rough but not “asteroid-like” • Polarization from a thin atmosphere adds to the surface polarization? NEW ERA IN POLARIMETRIC OBSERVATIONS Plutino 28978 Ixion (2001 KX76) 0.5 Boehnhardt et al. 2004 Ixion 0.0 R~ 19.7 mag -0.5 Telescope: 8 m VLT, FORS1 -1.0 P ≥ 1.3% Polarization degree,% Polarization min -1.5 σP ~ 0.1% -2.0 0.0 0.5 1.0 1.5 2.0 Phase angle, deg - unusually high negative polarization - rapid changes with the phase angle • Two component surface model (mixture of bright and dark scatters) FIRST PROGRAM OF POLARIZATION MEASUREMENTS OF TNO AND CENTAURS The polarimetric observations of Ixion demonstrated (a) the capability of the instrument (FORS1 VLT) to provide good-quality observations of faint objects (20 mag); (b) the capability of the polarimetric technique to study distant objects even if they are observable only at very small phase angles.
    [Show full text]
  • On the Irrelevance of Being a PLUTO! Size Scale of Stars and Planets
    On the irrelevance of being a PLUTO! Mayank Vahia DAA, TIFR Irrelevance of being Pluto 1 Size Scale of Stars and Planets Irrelevance of being Pluto 2 1 1 AU 700 Dsun Irrelevance of being Pluto 3 16 Dsun Irrelevance of being Pluto 4 2 Solar System 109 DEarth Irrelevance of being Pluto 5 11 DEarth Venus Irrelevance of being Pluto 6 3 Irrelevance of being Pluto 7 Solar System visible to unaided eye Irrelevance of being Pluto 8 4 Solar System at the beginning of 20 th Century Irrelevance of being Pluto 9 Solar System of my text book (30 years ago) Irrelevance of being Pluto 10 5 Asteroid Belt (Discovered in 1977) Irrelevance of being Pluto 11 The ‘Planet’ Pluto • Pluto is a 14 th magnitude object. • It is NOT visible to naked eye (neither are Uranus and Neptune). • It was discovered by American astronomer Clyde Tombaugh in 1930. Irrelevance of being Pluto 12 6 Prediction of Pluto • Percival Lowell and William H. Pickering are credited with the theoretical work on Pluto’s orbit done in 1909 based on data of Neptune’s orbital changes. • Venkatesh Ketakar had predicted it in May 1911 issue of Bulletin of the Astronomical Society of France. • He modelled his computations after those of Pierre-Simon Laplace who had analysed the motions of the satellites of Jupiter. • His location was within 1 o of its correct location. • He had predicted ts orbital period was 242.28 (248) years and a distance of 38.95 (39.53) A.U. • He had also predicted another planet at 59.573 A.U.
    [Show full text]
  • Transneptunian Object Taxonomy 181
    Fulchignoni et al.: Transneptunian Object Taxonomy 181 Transneptunian Object Taxonomy Marcello Fulchignoni LESIA, Observatoire de Paris Irina Belskaya Kharkiv National University Maria Antonietta Barucci LESIA, Observatoire de Paris Maria Cristina De Sanctis IASF-INAF, Rome Alain Doressoundiram LESIA, Observatoire de Paris A taxonomic scheme based on multivariate statistics is proposed to distinguish groups of TNOs having the same behavior concerning their BVRIJ colors. As in the case of asteroids, the broadband spectrophotometry provides a first hint about the bulk compositional properties of the TNOs’ surfaces. Principal components (PC) analysis shows that most of the TNOs’ color variability can be accounted for by a single component (i.e., a linear combination of the col- ors): All the studied objects are distributed along a quasicontinuous trend spanning from “gray” (neutral color with respect to those of the Sun) to very “red” (showing a spectacular increase in the reflectance of the I and J bands). A finer structure is superimposed to this trend and four homogeneous “compositional” classes emerge clearly, and independently from the PC analy- sis, if the TNO sample is analyzed with a grouping technique (the G-mode statistics). The first class (designed as BB) contains the objects that are neutral in color with respect to the Sun, while the RR class contains the very red ones. Two intermediate classes are separated by the G mode: the BR and the IR, which are clearly distinguished by the reflectance relative increases in the R and I bands. Some characteristics of the classes are deduced that extend to all the objects of a given class the properties that are common to those members of the class for which more detailed data are available (observed activity, full spectra, albedo).
    [Show full text]
  • EPSC2010-156, 2010 European Planetary Science Congress 2010 C Author(S) 2010
    EPSC Abstracts Vol. 5, EPSC2010-156, 2010 European Planetary Science Congress 2010 c Author(s) 2010 Polarimetric properties of transneptunian objects and Centaurs from the VLT Large Programme I.N. Belskaya (1,2), S. Bagnulo (3), M.A. Barucci (2), K. Muinonen (4,5), G.P. Tozzi (6), S. Fornasier (2,7), L. Kolokolova (8) (1) Institute of Astronomy, Kharkiv National University, Ukraine ([email protected]), (2) LESIA, Observatoire de Paris, France, (3) Armagh Observatory, United Kingdom, (4) Department of Physics, University of Helsinki, Finland, (5) Finnish Geodetic Institute, Masala, Finland, (6) INAF - Oss. Astrofisico di Arcetri, Firenze, Italy, (7) University of Denis Diderot -Paris VII, France, (8) University of Maryland, USA. measure 8 objects selected on the basis of two main Abstract m criteria: (1) R-filter brightness mR<21 to enable Polarimetric observations of 3 Centaurs and 5 polarimetry with observational error ~0.05% in less transneptunian objects (TNOs) carried out within the than 2 hours of telescope time; and (2) diversity of VLT Large Programme (VLT-LP) show that, first, all physical and dynamical properties of the sample objects display negative polarization at small phase objects. Measurements of linear polarization were angles whose minimum values varied from -0.3% to carried out with the FORS1 instrument in the R filter. -2.2%; second, even a single polarization A detailed description of the methods of observations measurement at a phase angle larger than 1º can and reduction can be found in [1]. The objects discriminate between a high-albedo and a low-albedo observed are given in Table 1 together with the surface; third, polarimetric properties of Centaurs are orbital type, taxonomy, and the range of phase angles more diverse than those of TNOs; and, fourth, covered by the observations.
    [Show full text]
  • Stellar Occultations Enable Milliarcsecond Astrometry for Trans-Neptunian Objects and Centaurs F
    Astronomy & Astrophysics manuscript no. 39054corr ©ESO 2020 October 27, 2020 Stellar occultations enable milliarcsecond astrometry for Trans-Neptunian objects and Centaurs F. L. Rommel1; 2; 3, F. Braga-Ribas2; 1; 3, J. Desmars4; 5, J. I. B. Camargo1; 3, J. L. Ortiz6, B. Sicardy7, R. Vieira-Martins1; 3, M. Assafin8; 3, P. Santos-Sanz6, R. Duffard6, E. Fernández-Valenzuela9, J. Lecacheux7, B. E. Morgado7; 1; 3, G. Benedetti-Rossi7; 3, A. R. Gomes-Júnior10, C. L. Pereira2; 3, D. Herald11; 12; 13, W. Hanna11; 12, J. Bradshaw14, N. Morales6, J. Brimacombe15, A. Burtovoi16; 17, T. Carruthers18, J. R. de Barros19, M. Fiori20; 17, A. Gilmore21, D. Hooper11; 12, K. Hornoch22, C. Jacques19, T. Janik11, S. Kerr12; 23, P. Kilmartin21, Jan Maarten Winkel11, G. Naletto20; 17, D. Nardiello24; 17, V. Nascimbeni17; 20, J. Newman11; 13, A. Ossola25, A. Pál26; 27; 28, E. Pimentel19, P. Pravec22, S. Sposetti25, A. Stechina29, R. Szakats26, Y. Ueno30, L. Zampieri17, J. Broughton31; 12, J. B. Dunham11, D. W. Dunham11, D. Gault12, T. Hayamizu30, K. Hosoi30, E. Jehin32, R. Jones11, K. Kitazaki30, R. Komžík33, A. Marciniak34, A. Maury35, H. Mikuž36, P. Nosworthy12, J. Fabrega Polleri37, S. Rahvar38, R. Sfair10, P. B. Siqueira10, C. Snodgrass39, P. Sogorb40, H. Tomioka30, J. Tregloan-Reed41, and O. C. Winter10 (Affiliations can be found after the references) Received ; accepted ABSTRACT Context. Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these distant small bodies and has presented exciting results.
    [Show full text]
  • Orbit Determination of Trans-Neptunian Objects and Centaurs for the Prediction of Stellar Occultations?,??
    A&A 584, A96 (2015) Astronomy DOI: 10.1051/0004-6361/201526498 & c ESO 2015 Astrophysics Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations?;?? J. Desmars1;2, J. I. B. Camargo1;3, F. Braga-Ribas1;3;4, R. Vieira-Martins1;3;???, M. Assafin5, F. Vachier2, F. Colas2, J. L. Ortiz6, R. Duffard6, N. Morales6, B. Sicardy7, A. R. Gomes-Júnior5, and G. Benedetti-Rossi1 1 Observatório Nacional/MCTI, Rua Gal. José Cristino 77, CEP 20921-400, Rio de Janeiro, Brazil 2 Institut de Mécanique Céleste et de Calcul des Éphémérides – Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, CEP 20921-400, Rio de Janeiro, Brazil 4 Federal University of Technology – Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 5 Observatório do Valongo/UFRJ, Ladeira do Pedro Antônio 43, CEP 20080-090, Rio de Janeiro, Brazil 6 Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, 18080 Granada, Spain 7 LESIA, Observatoire de Paris, CNRS UMR 8109, Université Pierre et Marie Curie, Université Paris-Diderot, 5 place Jules Janssen, 92195 Meudon Cedex, France Received 8 May 2015 / Accepted 7 September 2015 ABSTRACT Context. The prediction of stellar occultations by trans-Neptunian objects (TNOs) and Centaurs is a difficult challenge that requires accuracy both in the occulted star position and in the object ephemeris. Until now, the most used method of prediction, involving dozens of TNOs/Centaurs, has been to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris, usually the latest public version.
    [Show full text]
  • The Kuiper Belt: Launch Opportunities from 2025 to 2040
    Return to the Kuiper Belt: launch opportunities from 2025 to 2040 Amanda M. Zangari,* Tiffany J. Finley† and S. Alan Stern‡ Southwest Research Institute 1050 Walnut St, Suite 300, Boulder, CO 80302, USA and Mark B. Tapley§ Southwest Research Institute P.O. Drawer 28510 San Antonio, Texas 78228-0510 Nomenclature AU = astronomical unit, average Earth - Sun distance B = impact parameter C3 = excess launch energy ∆V = change in velocity required to alter a spacecraft's trajectory KBO = Kuiper Belt Object PC = plane crossing rp = planet radius rq = distance from a planet at periapse � = gravitational constant * planet mass �! = arrival velocity of a spacecraft � = angle between incoming and outgoing velocity vectors during a swingby * Research Scientist, Space Science and Engineering, [email protected] † Principal Engineer, Space Science and Engineering, AIAA Member, [email protected] † Principal Engineer, Space Science and Engineering, AIAA Member, [email protected] ‡ Associate Vice President-R&D, Space Science and Engineering, AIAA Member, [email protected] § Institute Engineer, Space Science and Engineering, AIAA Senior Member, [email protected] Preliminary spacecraft trajectories for 45 Kuiper Belt Objects (KBOs) and Pluto suitable for launch between 2025 and 2040 are presented. These 46 objects comprise all objects with H magnitude < 4.0 or which have received a name from the International Astronomical Union as of May 2018. Using a custom Lambert solver, trajectories are modeled after the New Horizons mission to Pluto-Charon, which consisted of a fast launch with a Jupiter gravity assist. In addition to searching for Earth-Jupiter-KBO trajectories, Earth-Saturn-KBO trajectories are examined, with the option to add on a flyby to either Uranus or Neptune.
    [Show full text]
  • Physical Properties of Transneptunian Objects 879
    Cruikshank et al.: Physical Properties of Transneptunian Objects 879 Physical Properties of Transneptunian Objects D. P. Cruikshank NASA Ames Research Center M. A. Barucci Observatoire de Paris, Meudon J. P. Emery SETI Institute and NASA Ames Research Center Y. R. Fernández University of Central Florida W. M. Grundy Lowell Observatory K. S. Noll Space Telescope Science Institute J. A. Stansberry University of Arizona In 1992, the first body beyond Neptune since the discovery of Pluto in 1930 was found. Since then, nearly a thousand solid bodies, including some of planetary size, have been dis- covered in the outer solar system, largely beyond Neptune. Observational studies of an expanding number of these objects with space- and groundbased telescopes are revealing an unexpected diversity in their physical characteristics. Their colors range from neutral to very red, revealing diversity in their intrinsic surface compositions and/or different degrees of processing that they have endured. While some show no diagnostic spectral bands, others have surface deposits of ices of H2O, CH4, and N2, sharing these properties with Pluto and Triton. Thermal emission spectra of some suggest the presence of silicate minerals. Measurements of thermal emission allow determinations of the dimensions and surface albedos of the larger (diameter > ~75 km) members of the known population; geometric albedos range widely from 2.5% to >60%. Some 22 transneptunian objects (including Pluto) are multiple systems. Pluto has three satellites, while 21 other bodies, representing about 11% of the sample investigated, are binary systems. In one binary system where both the mass and radius are reliably known, the mean density of the pri- mary is ~500 kg/m3, comparable to some comets [e.g., Comet 1P/Halley (Keller et al., 2004)].
    [Show full text]