View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis Kai Papenfort,1,2 Yan Sun,3 Masatoshi Miyakoshi,1 Carin K. Vanderpool,3,* and Jo¨ rg Vogel1,* 1Institute for Molecular Infection Biology, University of Wu¨ rzburg, Wu¨ rzburg 97070, Germany 2Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA 3Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA *Correspondence:
[email protected] (C.K.V.),
[email protected] (J.V.) http://dx.doi.org/10.1016/j.cell.2013.03.003 SUMMARY glycolytic flux, their intracellular levels must be tightly regulated since high levels are toxic and strongly impair cell growth (Irani Glucose homeostasis is strictly controlled in all and Maitra, 1977; Kadner et al., 1992) and cause DNA damage domains of life. Bacteria that are unable to balance (Bucala et al., 1985; Lee and Cerami, 1987). Similarly, many non- intracellular sugar levels and deal with potentially metabolizable sugars can cause phosphosugar stress. For toxic phosphosugars cease growth and risk being example, the glucose analog a-methyl-glucoside (a-MG) is outcompeted. Here, we identify the conserved haloa- efficiently imported by PtsG, the major glucose transporter of a cid dehalogenase (HAD)-like enzyme YigL as the pre- Escherichia coli and Salmonella (Jahreis et al., 2008). -MG-6- phosphate accumulates in the cytoplasm and can terminate viously hypothesized phosphatase for detoxification bacterial growth (Pikis et al., 2006; Rogers and Yu, 1962).