ADM Issue 17
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal Circulation and Water-Column Properties in The
Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey FRONT COVER: Left: Photograph showing the impact of intentionally set wildfires on the land surface of War in the Pacific National Historical Park. Right: Underwater photograph of some of the healthy coral reefs in War in the Pacific National Historical Park. Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 By Curt D. Storlazzi, Olivia M. Cheriton, Jamie M.R. Lescinski, and Joshua B. Logan Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Suggested citation: Storlazzi, C.D., Cheriton, O.M., Lescinski, J.M.R., and Logan, J.B., 2014, Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam—Measurements and modeling of waves, currents, temperature, salinity, and turbidity, April–August 2012: U.S. -
Buoys, Fenders and Floats Main Catalog
s t a o l F d g n o l 5 a 5 a 9 t s 1 r a e e C c n d i n s n i - e a F M , s y o u B Polyform - the Originator of the modern Plastic Buoy 2 Polyform ® was established in Ålesund, Norway in the year of 1955 and was the first company in the world to produce an inflatable, rotomolded soft Vinyl buoy. The product was an instant success and was immediately accepted in the domestic as well as overseas markets. Products and machinery were gradually developed and improved until the first major leap forward in our production technology happened in the 1970’s and early 1980’s when specially designed, in-house constructed machinery for rotomolding of our buoys and fenders was developed and put into use. Such type of machinery at that time was truly unique in the world of molding buoys and fenders. More recent and even more revolutionary developments took place in the new millennium, by our designing and constructing of the first ever fully automated and robot assisted production machinery, built for molding of inflatable fenders. Ever since the start in 1955, our company has been committed to further expand the range and to further develop, customize and improve the individual products. Today, Polyform ® of Norway can offer the widest range of inflatable buoys and fenders , expanded foam marina fenders, purse seine floats and an extensive range of hard-plastic products for use throughout the marine industry, including aquaculture/fish-farming, offshore oil and gas industry, harbors, ships, marina industry and custom made products also for land-based applications. -
Fossils Cave Trip Report 15-16Th August
FOSSIL CAVE MEGAFAUNAL DISCOVERY AND RETRIEVAL, 2009 – Neville Skinner For me the discovery of important megafaunal 500mm across, between rocks that led into a bones had started with a dive in Fossil Cave small room. (5L81) back in August 2008, at a time when Matt Skinner was preparing for his CDAA Penetration Matt shot into the entrance of the small room like (Advanced Cave) course and keen to dive as many a rat up a drainpipe, with me close behind, until I sites as possible. Megafauna relates to large realised there may not be enough room for the animals (mammals & flightless birds), usually two of us. At that point Matt had hardly gone 2m heavier than 30kg, that have become extinct since in to check out the room and was now on the the last ice-age, i.e. from 1.6m to 10,000 years other side of it. Perhaps I had over inflated my ago approx. expectations a smidgen I was thinking, as I waited for Matt to find a space to turn around before The ‘5L81’ refers to the official cave reference heading out again. While Matt stopped to number recognised by the Cave Exploration investigate a window in the floor I noticed a Group (of) South Australia (CEGSA) Inc., tunnel heading off to my right, which had a few replacing its original south-east reference number bones sitting on a ledge adjacent to its entrance ‘S123’ in the mid-1970s with its Lower south-east (see Figure 1) that Matt had not yet noticed. number of ‘5L81’ (‘5’ referring to the state of SA, ‘L’ for the Lower South East, and ‘81’ because it As Matt was swimming toward me ready to leave was the eighty-first cave registered in the then the room, I flashed my torch at the tunnel newly-defined LSE area). -
Exploration/Survey in Whigpistle Cave System Patricia Kambesis Cave Research Foundation, [email protected]
Western Kentucky University TopSCHOLAR® Mammoth Cave Research Symposia 10th Research Symposium 2013 Feb 15th, 10:45 AM The akM ing of a Connection: Exploration/Survey in Whigpistle Cave System Patricia Kambesis Cave Research Foundation, [email protected] Joel Despain Cave Research Foundation Chris Groves Hoff am n Environmental Research Institute, Western Kentucky University Follow this and additional works at: http://digitalcommons.wku.edu/mc_reserch_symp Part of the Animal Sciences Commons, Forest Sciences Commons, Geology Commons, Hydrology Commons, Other Earth Sciences Commons, and the Plant Sciences Commons Recommended Citation Patricia Kambesis, Joel Despain, and Chris Groves, "The akM ing of a Connection: Exploration/Survey in Whigpistle Cave System" (February 15, 2013). Mammoth Cave Research Symposia. Paper 8. http://digitalcommons.wku.edu/mc_reserch_symp/10th_Research_Symposium_2013/Day_two/8 This is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Mammoth Cave Research Symposia by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. The Making of a Connection – The Potential of a Mammoth Cave System-Whigpistle Cave Connection 1 1 2 Patricia Kambesis , Joel Despain , Chris Groves 1 Cave Research Foundation 2 Hoff man Environmental Research Institute, Western Kentucky University Abstract The current length of the Flint Ridge-Mammoth Cave System (to be called Mammoth Cave System for the rest of this paper) has been attained by a series of connections instigated by cave explorers/mappers of the Cave Research Foundation (CRF) and Central Kentucky Karst Coalition (CKKC). Between 1961 and 2011, connections have expanded the surveyed extent of the cave system to its current “offi cial” length of 390 miles (650 km). -
NIKONOS Speedlighf
Nikon NIKONOS Speedlighf INSTRUCTION MANUAL NOMENCLATURE _______ CD Synchro socket index Joint collar @ Flash head positioning index @ Joint plate ® i ion mark @ i ion mark (@I (J) Sensor socket ® ro socket ® Synchro socket cover Joint @ @ Snp,erllinlht Arm@ ® Camera plug and locking ring Grip @ Sensor holder socket O-rings and lubricant @ @ Sensor holder positioning pin @ Bracket slot @ Bracket screw @Bracket Arm knob @ @ Buckle lock/release latch Battery chamber cap index @ Target -light holder @ @ calculation dial screw ® Exposure calculation dial Exposure calculation dial ® Distance scale scale mode selector ® @ Distance lines T-S switch ®> @ Non-TTL auto shooting aperture scale @ Non-TTL auto shooting aperture index Power switch ® scale 2 CONTENTS _________ NOMENCLATURE . 2 FOREWORD .. ... .. ...... ........ .. ..... 4 PREPARATION .......... ................... 4-6 Examining and lubricating the O-rings ... .. 5 The O-rings and their sealing method .... 6 TIPS ON SPEEDLIGHT CARE. .. 7 BASIC OPERATIONS . .. ..... ............... 8-16 CONTROLS IN DETAIL . ......... .... .. .... 17-30 Bracket ... .. ... .. .... .... ... .. .. ... ... 17 Arm .... .. ... ....... .. .. .. .. .. 17 Joint . ....... .... .. .. ... 18 Close-Up Shooting in the Non-TTL Automatic Mode . .. 18 Synchro Socket . .. 19 Sensor Socket . .. 19 Sensor Unit SU-101 (Optional). ... .. ... ... 20 Synchronization Speed . .. ....... ........ 20 Shooting Mode Selector. .. 21 Exposure Calculation Dial . ... ... .. 22 TTL Automatic Flash Control . .... 22-23 Non-TTL Automatic -
Climate of the Southeast United States
N$%"',$! C!"#$%& A++&++#&,% R&."',$! T&/),"/$! I,0*% R&0'1% S&1"&+ C!"#$%& '( %)& S'*%)&$+% U,"%&- S%$%&+ VARIABILITY, CHANGE, IMPACTS, AND VULNERABILITY Edited by: Keith T. Ingram Kirstin Dow Lynne Carter Julie Anderson Climate of the Southeast United States Variability, Change, Impacts, and Vulnerability © 2013 Southeast Climate Consortium All rights reserved under International and Pan-American Copyright Conventions. Reproduction of this report by electronic means for personal and noncommercial purposes ȱĴȱȱȱȱȱ ȱȱǯȱȱȱȱȱ ¢ȱȱȱȱȱ ȱȱȱȱ ȱȱȱ ȱ ȱȱȱ Ĵȱȱȱȱǯ ȱȱȱȱȱȱȱȱȱȱǯ Printed on recycled, acid-free paper ȱȱȱȱȱȱ Citation: ǰȱ ǯǰȱ ǯȱ ǰȱǯȱǰȱ ǯȱǰȱǯȱŘŖŗřǯȱȱȱȱȱ ȱDZȱ¢ǰȱǰȱǰȱȱ¢ǯȱȱDZȱ ȱǯ Keywords:ȱȬĴȬȱǰȱǰȱǰȱȱ¢ǰȱ ǰȱǰȱȱǰȱ¢ǰȱȱ ǰȱȱǰȱ climate impacts, climate modeling, climate variability, coastal, drought, education, electric ȱǰȱ¡ȱ ǰȱĚǰȱȱǰȱ£ǰȱȱȱǰȱ ȱ ǰȱǰȱȬȱǰȱǰȱǰȱǰȱȱȱ ǰȱȱęǰȱȱǰȱǰȱȱǰȱǰȱȬ ȱ intrusion, sea level rise, silviculture, social vulnerability, Southeast, storm surge, tropical ǰȱǰȱ¢ǰȱǯǯȱȱ ǰȱȬȱǰȱ ȱǰȱ ǰȱ ę ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱ¢ȱǰȱǰȱǰȱȱ Tribal Government or Non-governmental entity. Front Cover Images: ȱǰȱ ǰȱ¢ȱȱȱȱȱȱ ȂȱȱǻǼǯȱȱȱ¢ȱ ȱȱȱȱDZȱ ȱ¢ȱȱȱ ȱǰȱ¢ȱȱȱȱȱDzȱ¢ȱȱ ȱȱ ȱȱȱǰȱȱ ǯȱDzȱȱȱȱǰȱ¢ȱȱ ȱȱȱȱȱDzȱȱ ȱȱȱǻǼȱȱȱ ȱǰȱ ¢ȱȱDzȱȱĚ ȱȱȱȱȱǰȱ¢ȱȱȱȱ ȱDzȱȱȱȱǰȱǰȱǰȱȱĴǯ About This Series This report is published as one of a series of technical inputs to the Third National ȱȱǻǼȱǯȱȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱŗşşŖǰȱ ȱȱȱȱȱȱȱ and Congress every four years on the status of climate change science and impacts. The NCA informs the nation about already observed changes, the current status of the climate, and anticipated trends for the future. The NCA report process integrates ęȱȱȱȱȱȱȱȱȱ¢ȱęȱȱ ęȱȱȱȱ ǯȱȱȱȱȱȱȱȱȱ- ȱȱȱȱȱ¢ȱǯǯȱ£ǰȱȱȱȱȱ¢ȱȱ ȱȱȱ¢ȱȱȱȱȱȂȱǯ ȱȱȱŘŖŗŗǰȱȱȱȱȱȱȱȱȱȱȱ¡ȱȱ ǰȱȱ¢ǰȱȱȱȱǰȱȬȱ£- ǰȱȱǰȱȱȱǰȱ ȱȱȱȱȱȱ Ĵȱȱȱȱȱǯȱ ȱǰȱȱȱȱǰȱȱ ȱȱ ȱȱȱȱȱȱǰȱ ȱȱȱȱȱ input reports highlighting past climate trends, projected climate change, and impacts ȱęȱȱȱȱǯȱȱȱȱȱ ȱȱȱ- ing this technical input. -
Nikon Report2017
Nikon 100th Anniversary Special Feature A Look Back at Nikon’s 100-Year History of Value Creation Nikon celebrated the 100th anniversary of its founding on July 25, 2017. Nikon has evolved together with light-related technologies over the course of the past century. Driven by our abundant sense of curiosity and inquisitiveness, we have continued to unlock new possibilities that have shined light on the path to a brighter future, creating revolutionary new products along the way. We pride ourselves on the contributions we have made to changing society. Seeking to make our hopes and dreams a reality, the Nikon Group will boldly pursue innovation over the next 100 years, striving to transform the impossible of yesterday into the normal of tomorrow. We will take a look back at Nikon’s 100-year history of value creation. 1917 Three of Japan’s leading optical 1946 Pointal ophthalmic lens manufacturers merge to form is marketed a comprehensive, fully integrated Nikon’s fi rst ophthalmic lens optical company known as Nikon brand name is adopted for Nippon Kogaku K.K. small-sized cameras Pointal Oi Dai-ichi Plant (now Oi Plant) Tilting Level E and Transit G 1918 is completed 1947 surveying instruments are marketed Nikon’s fi rst surveying instruments after World War II MIKRON 4x and 6x 1921 ultra-small-prism binoculars are marketed Nikon Model I small-sized 1948 camera is marketed The fi rst binoculars developed, designed and manufactured The fi rst Nikon camera and the by Nikon fi rst product to bear the MIKRON 6x “Nikon” name Nikon Model I Model -
Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12 -
1.0 Introduction
1.0 INTRODUCTION 1.1 MARINE RECREATION AND TOURISM IN HAWAI‘I Hawai‘i hosts approximately seven million visitors each year who spend more than US $11 billion in the state and in the last 20 years tourism has increased over 65% (Friedlander et al., 2005). More than 80% of Hawaii’s visitors engage in recreation activities in the state’s coastal and marine areas with the majority of these individuals participating in scuba diving (200,000 per year) or snorkeling (3 million per year) when visiting (Hawai‘i DBEDT, 2002; van Beukering & Cesar, 2004). Other popular marine recreation activities include ocean kayaking, parasailing, swimming, outrigger canoeing, and surfing. Coral reef areas are a focal point for much of this recreation use, but these areas are also a natural resource that has considerable social, cultural, environmental, and economic importance to the people of Hawai‘i. For example, the state’s reefs generate US $800 million in revenue and $360 million in added value each year (Cesar & van Beukering, 2004; Davidson et al., 2003). These reefs are also important for local residents, as approximately 30% of households in the state have at least one person who fishes for recreation and almost 10% of households also fish for subsistence purposes (QMark, 2005). As popularity of Hawaii’s reef areas continues to increase, demand for access and use can disrupt coastal processes, damage ecological integrity of reef environments, reduce the quality of user experiences, and generate conflict among stakeholders regarding appropriate management responses (Orams, 1999). As a result, state regulatory agencies such as Hawaii’s Department of Land and Natural Resources (DLNR) are faced with a set of challenges that include determining use thresholds and how to 1 manage and monitor use levels to ensure that thresholds are not violated, protecting reef environments from degradation, and ensuring that user experiences are not compromised. -
Where America's Day Begins
Guam Where America’s Day Begins 1 Tumon Bay 2 Two Lovers Point 3 Local boy and mango 4 Where is Paradise? U.S. Territory located • RUSSIA in the Pacific Ocean, Moscow Vladivostok Beijing CHINA KOREA a true tropical island Seoul Osaka JAPAN KOREA Tokyo CHINA JAPAN Shanghai Commonwealth of the TAIWANNorthern Mariana Islands Situated approximately Hong Kong Taipei Saipan HONG KONG • Hanoi TAIWAN GUAM TERRITORY OF THE USA 900 miles north of the Manila PHILIPPINES PHILIPPINES Ho Chi Minh City equator VIETNAM • 32 miles long and ranges between 4 and 8 miles in width • Shaped like a footprint, Guam is the first step into Micronesia 5 Gateway to the Marianas and Micronesia The meaning of Micronesia: • COMMONWEALTH Saipan MICRONESIA OF NORTHERN Tinian MARIANA ISLANDS Rota “micro” – tiny Pacific Ocean Philippine Sea “nesia” – many GUAM TERRITORY OF U.S.A. REPUBLIC FEDERATED STATES REPUBLIC OF Micronesia – “many tiny OF PALAU OF MICRONESIA MARSHALL ISLANDS Pohnpei Kwajalein islands” Palau Yap Chuuk Kosrae Majuro • Largest and most populated island in the Marianas • Communications, transportation and financial hub in the Marianas 6 RUSSIA Getting Moscow Vladivostok Beijing CHINA KOREA Seoul Osaka JAPAN to Guam KOREA Tokyo CHINA JAPAN Shanghai Commonwealth of the TAIWANNorthern Mariana Islands From Hong Kong Taipei HONG KONG Hanoi TAIWAN GUAM TERRITORY OF THE USA Manila PHILIPPINES Vietnam PHILIPPINES Ho Chi Minh City VIETNAM Flight Time Hanoi to Guam via Korea 9 hrs via Taiwan 6 hrs 40 min via Tokyo 8 hrs 50 min Ho Chi Minh City via Hong Kong 10 hrs to Guam via Taiwan 7 hrs 15 min via Manila 6 hrs 30 min 7 Climate & Geography • Average 85ºF (29ºC) • Guam is on the edge of the Mariana Trench, the deepest trench in the world • Craggy limestone cliffs dominate in the North and rolling hills with spectacular views in the South 8 The People • 160,000 Residents • Population is 37% Chamorro, 26% Filipino and 11% other Pacific Islanders. -
Ecological and Socio-Economic Impacts of Dive
ECOLOGICAL AND SOCIO-ECONOMIC IMPACTS OF DIVE AND SNORKEL TOURISM IN ST. LUCIA, WEST INDIES Nola H. L. Barker Thesis submittedfor the Degree of Doctor of Philosophy in Environmental Science Environment Department University of York August 2003 Abstract Coral reefsprovide many servicesand are a valuableresource, particularly for tourism, yet they are suffering significant degradationand pollution worldwide. To managereef tourism effectively a greaterunderstanding is neededof reef ecological processesand the impactsthat tourist activities haveon them. This study explores the impact of divers and snorkelerson the reefs of St. Lucia, West Indies, and how the reef environmentaffects tourists' perceptionsand experiencesof them. Observationsof divers and snorkelersrevealed that their impact on the reefs followed certainpatterns and could be predictedfrom individuals', site and dive characteristics.Camera use, night diving and shorediving were correlatedwith higher levels of diver damage.Briefings by dive leadersalone did not reducetourist contactswith the reef but interventiondid. Interviewswith tourists revealedthat many choseto visit St. Lucia becauseof its marineprotected area. Certain site attributes,especially marine life, affectedtourists' experiencesand overall enjoyment of reefs.Tourists were not alwaysable to correctly ascertainabundance of marine life or sedimentpollution but they were sensitiveto, and disliked seeingdamaged coral, poor underwatervisibility, garbageand other tourists damagingthe reef. Some tourists found sitesto be -
Underwater Speleology
... _.__ ._._ ........ _- ..... _---------------. UNDERWATER SPELEOLOGY OFFICIAL NEWSLmER OF THE CAVE DIVING SECTION OF THE NATIONAL SPELEOLOGICAL SOCIETY VOLUME 8 NUMBER 1 Underwater Speleology, vol.8, N9.1 UNDERWATER SPELEOLOGY ON THE COVER ............... Published Bimonthly Beginning in February Sheck Exley (NSS 13146) begins an extensive by exploration of one of the many clear first The Cave Diving Section of magnitude springs in Florida. These springs The National Speleological Society include nine of the ten longest caves in Florida. Photo by John Zumrick (NSS 187B8). c/o Stephen Maegeriein, P. O. Box 60 Williams, Indiana 47470 CALENDAR Deadline for publication is the second Friday of the preceeding month. Send exchange publications and editorial correspondence to the editor: July 12-18 5th International Cave Diving John Zumrick Camp. Contact Sheck Exley, 10259 120 Rusty Gans Dr. Panama City Beach, Florida 32407 Crystal Sprgs Rd., Jacksonvil Ie, Florida 32221 Section membership, including a subscription to un· derwater speleology is open to all members in good stan· July 18-24 8th International Congress of ding of the National Speleological Society at $3.00 per Speleology, Bowling Green, Ky. year. Subscription to non-members is $5.00 per year. Make checks payabie to the NSS Cave Diving Section in For information write Eighth care of the Treasurer. Opinions expresSed in Underwater International Congress of Speleology are not necessarily those of the section or the Speleology, Secretariat, Dept of NSS. Geography and Geology, Western Kentucky Unlv., Bowling Green, Kentucky 42101. EXECUTIVE COMMITTEE ***************RENEWAL TIME?****************** CHAIRPERSON VICE-CHAI RPERSON Dennis Williams (N55 182&11 Karen E.