Boiling Water Reactor Simulator

Total Page:16

File Type:pdf, Size:1020Kb

Boiling Water Reactor Simulator TRAINING COURSE SERIES No. 23 Boiling water reactor simulator Workshop material INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2003 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria BOILING WATER REACTOR SIMULATOR IAEA, VIENNA, 2003 IAEA-TCS-23 ISSN 1018–5518 © IAEA, 2003 Printed by the IAEA in Austria September 2003 FOREWORD The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, “Reactor Simulator Development” (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 “WWER-1000 Reactor Simulator” (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 “Pressurized Water Reactor Simulator” (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. W.K. Lam, of Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA. The IAEA officer responsible for this publication was R.B. Lyon from the Division of Nuclear Power. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION ................................................................................................1 1.1 Purpose........................................................................................................1 1.2 Historical background .................................................................................1 1.3 Prominent characteristics of the BWR ........................................................3 2. 1300 MW(e) BOILING WATER REACTOR NPP SIMULATOR.....................5 2.1 Simulator startup.........................................................................................7 2.2 Simulator initialization................................................................................7 2.3 List of BWR simulator display screens.......................................................8 2.4 Generic BWR simulator display common features.....................................8 3. SIMULATOR DISPLAY SCREENS.................................................................10 3.1 BWR plant overview screen......................................................................10 3.2 BWR control loops screen.........................................................................12 3.3 BWR power/flow map & controls.............................................................14 3.4 BWR reactivity & controls screen.............................................................18 3.5 BWR scram parameters screen..................................................................20 3.6 BWR turbine generator screen ..................................................................21 3.7 BWR feedwater and extraction steam screen............................................22 4. SIMULATOR EXERCISES...............................................................................24 4.1 Introductory exercises ...............................................................................24 4.1.1 Power maneuver: 10% power reduction and return to full power.........................................................................................24 4.1.2 Reduction to 0% full power and back to 100% full power ..............24 4.1.3 Turbine trip and recovery.................................................................25 4.1.4 Reactor scram and recovery .............................................................25 4.2 Malfunction exercises................................................................................26 4.2.1 Loss of feedwater — Both FW pumps trip. .....................................26 4.2.2 Increasing core flow due to flow control failure ..............................28 4.2.3 Decreasing core flow due to flow control failure.............................29 4.2.4 Decreasing steam flow from dome due to pressure control failure ....................................................................30 4.2.5 Increasing steam flow from dome due to pressure control failure ....................................................................30 4.2.6 Turbine throttle PT fails low ............................................................32 4.2.7 Safety relief valve (SRV) on one main steam line fails open ..........33 4.2.8 Feedwater level control valve fails open..........................................34 4.2.9 Turbine trip with bypass valve failed closed....................................35 4.2.10 Inadvertent withdrawal of one bank of rods...................................36 4.2.11 Inadvertent insertion of one bank of rods.......................................37 4.2.12 Inadvertent reactor isolation...........................................................38 4.2.13 Loss of feedwater heating...............................................................39 4.2.14 Power loss to three reactor internal pumps (RIPs) .........................41 4.2.15 Steam line break inside drywell .....................................................42 4.2.16 Feedwater line break inside drywell...............................................43 4.2.17 Reactor vessel bottom break — 3000 kg/sec LOCA .....................45 4.2.18 Load rejection.................................................................................47 5. STEADY STATE MODEL................................................................................48 5.1 Purpose......................................................................................................48 5.2 Boiling water reactor mass and energy balance ........................................48 5.3 Boiling water reactor spreadsheet model ..................................................51 5.3.1 Procedures for spreadsheet model....................................................53 5.3.2 Steady state model solutions ............................................................55 6. DYNAMIC MODEL DESCRIPTION ...............................................................56 6.1 Reactor model............................................................................................57 6.2 Fuel heat transfer.......................................................................................59 6.3 Decay heat model ......................................................................................60 6.4 Coolant heat transfer .................................................................................61 6.5 Core hydraulics and heat transfer..............................................................63 6.5.1 Incompressible flow for non-boiling region.....................................63 6.5.2 Compressible flow for boiling region ..............................................65 6.5.3 Boiling boundary..............................................................................66 6.5.4 Summary of multi-nodal approach for simulating core hydraulics and heat transfer .............................................................66 6.6 Saturated enthalpy, saturated liquid density..............................................67 6.7 Core exit enthalpy, core quality, void fraction..........................................68 6.8 Dome mass balance and energy balance ...................................................68 6.9 Saturated steam density and dome pressure ..............................................69 6.10 Driving pressure in boiling core................................................................70 6.11 Recirculation flow & pressure losses ........................................................71 6.12 Coolant recirculation pumps .....................................................................72 6.13 Feedwater flow..........................................................................................72 6.14 Main steam system ....................................................................................73 6.15 Control and protection systems .................................................................74 6.15.1 Control rods control system ...........................................................75 6.15.2 Recirculation flow control..............................................................76
Recommended publications
  • Spent Nuclear Fuel Pools in the US
    Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3
    [Show full text]
  • Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste
    Hitachi Review Vol. 63 (2014), No. 9 602 Featured Articles Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste Tetsushi Hino, Dr. Sci. OVERVIEW: One of the problems with nuclear power generation is the Masaya Ohtsuka, Dr. Eng. accumulation in radioactive waste of the long-lived TRUs generated as Kumiaki Moriya byproducts of the fission of uranium fuel. Hitachi is developing a nuclear reactor that can burn TRU fuel and is based on a BWR design that is Masayoshi Matsuura already in use in commercial reactors. Achieving the efficient fission of TRUs requires that the spectrum of neutron energies in the nuclear reactor be modified to promote nuclear reactions by these elements. By taking advantage of one of the features of BWRs, namely that their neutron energy spectrum is more easily controlled than that of other reactor types, the new reactor combines effective use of resources with a reduction in the load on the environment by using TRUs as fuel that can be repeatedly recycled to burn these elements up. This article describes the concept behind the INTRODUCTION RBWR along with the progress of its development, NUCLEAR power generation has an important role to as well as its specifications and features. play in both energy security and reducing emissions of carbon dioxide. One of its problems, however, is the accumulation in radioactive waste from the long- RBWR CONCEPT lived transuranium elements (TRUs) generated as Plutonium Breeding Reactor byproducts of the fission of uranium fuel. The TRUs The original concept on which the RBWR is based include many different isotopes with half-lives ranging was the plutonium generation boiling water reactor from hundreds to tens of thousands of years or more.
    [Show full text]
  • Safety Analysis for Boiling Water Reactors
    Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary GRS - 98 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary E. Kersting J. von Linden D. Müller-Ecker W. Werner Translation by F. Janowski July 1993 GRS - 98 ISBN 3-923875-48-7 Note This report is the translation of GRS-95 "Sicherheitsanalyse für Siedewasserreaktoren - Zusammenfassende Darstellung". Recent analysis results - concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. Keywords Safety analysis, PSA, boiling water reactor, accidents, event-sequence analysis, systems analysis, fault-tree analysis, reliability data, accident management Abstract After completing the German Risk Study for pressurised water reactors, the Gesell­ schaft für Anlagen- und Reaktorsicherheit (GRS) has now conducted for the first time a probabilistic safety analysis for boiling water reactors (BWR) on behalf of the Federal Minister for Research and Technology (BMFT). Reactor safety is constantly developed in line with research findings and operating experience. Thus reactor safety is a dynamic process in which safety analyses play an important role. Probabilistic safety analyses determine the frequency of certain events (e.g. leaks in pipes) and the failure probabilities of the safety systems needed to control such events. The failure of safety systems initially leads to a hazard to the cooling of the reactor core. When such hazard states occur, there are accident­ management measures which can still be carried out in order to prevent core melt.
    [Show full text]
  • Self-Sustaining Thorium Boiling Water Reactors
    Project No. 11-3023 Self-Sustaining Thorium Boiling Water Reactors Reactor Concepts Dr. Ehud Greenspan University of California-Berkeley In collaboration with: Massachusetts Institute of Technology University of Michigan Brookhaven National Laboratory Brian Robinson, Federal POC Temitope Taiwo, Technical POC NEUP Project # 11-3023 September 2011 to December 2014 Self-sustaining thorium boiling water reactors Summary Report Ehud Greenspan, Phillip M. Gorman, Sandra Bogetic, Jeffrey E. Seifried, Guanheng Zhang, Christopher R. Varela, Massimiliano Fratoni and Jasmina L. Vujic UC Berkeley, [email protected] Thomas Downar, Andrew Hall, Andrew Ward, Michael Jarrett, Aaron Wysocki and Yunlin Xu University of Michigan, [email protected] Mujid Kazimi, Koroush Shirvan and Alexander Mieloszyk MIT, [email protected] Michael Todosow, Nicholas Brown and Lap Cheng BNL, [email protected] 28 February 2015 1 Table of Contents Overview Page Executive summary 3 1. Introduction 7 2. The RBWR cores 7 2.1 Hitachi RBWR cores 7 2.2 Independent evaluation of the Hitachi designs 14 2.3 The incentive for thorium-based RBWR 15 2.4 The thorium-based RBWR core designs 17 3. Development of computational methods for RBWR type cores 19 3.1 3-D core simulator 20 3.2 Monte-Carlo based coupled neutronics - TH - depletion analysis capability 21 3.3 Stability and safety analysis capability 21 3.4 Fuel performance analysis capability 22 3.5 Thermal hydraulic correlations for tight lattice high void cores 24 4. Feasibility of fuel-self-sustaining RBWR-Th cores 24 4.1 Study strategy 24 4.2 RBWR-Th core designs 26 4.3 RBWR-Th safety and stability 30 4.4 RBWR-Th fuel performance 31 5.
    [Show full text]
  • Report on Technical Feasibility of Fusion Energy to the Special Committee for the ITER Project
    March 8, ASDEX Upgrade Seminar Report on Technical Feasibility of Fusion Energy to the Special Committee for the ITER Project M. Kikuchi Former member of subcommittee for Fusion Development Strategy under Fusion Council Structure of Fusion Program Promotion in Japan (before May 17,2000) Special committee for the ITER Project Chair: Prof. H. Yoshikawa Atomic Energy Fusion ITER/EDA Technical Commission Council Subcommittee Chair: Prof. N. Inoue Chair: Prof. M. Wakatani Planning and Promotion Subcommittee Chair: Prof. K. Miya Subcommittee for Fusion Development Strategy Chair: Prof. N. Inoue 1 Charge to Subcommittee for Fusion Development Strategy (3) Technical feasibility of the fusion energy (4) Extension of the program and basic supporting research For topic (3) above, the Special Committee additionally requested an evaluation of the feasibility of fusion energy as a safe and reliable energy source from the aspects of technical potential, management capability, and characteristics of Japanese industrial structure. Two other subcommittes are formed for answering (1) Survey of long term demand and supply of energy sources (2) Feasibility study of alternative energy sources (5) Distribution of resources for research (6) International relations. 2 Members of Subcommittee for Fusion Development Strategy (April 2000) Nobuyuki Inoue (Chairman) Chairman of Fusion Council Professor, Institute of Advanced Energy, Kyoto University) Katsunori Abe Professor, Graduate School of Engineering, Tohoku University Kunihiko Okano Research Fellow, Komae Research
    [Show full text]
  • Interstate Commerce Commission Washington
    INTERSTATE COMMERCE COMMISSION WASHINGTON REPORT NO. 3483 wTRAL OF GSOLTIA RAILWAY COMPANY IN RE ACCJ DENT AT MCINTIRE , OA.f ON ATJVAJS: 29, 1952 Report No. 3483 SUMMARY Date: August 29, 1952 Rail road: Central of Georgia Location: Mcli-tyre, G&. Kino oi' accident: Boiler explosion Train Number: Gordon svnitch local Locomotive number: g 00 Conn 1st: Ltjht, at time of accident Speed: Standing Operation: Local si\ri telling Track: On house track Tire : 1:20 p. m, g, nidl!-|c3: 2 Injured Cause : Overheated crown sheet result­ ing from low water INTERSTATE CONNERCE COMMISSION REPORT NO. 3483 IN THE NATTER OP MAKING ACCIDENT INVESTIGATION UNDER THE LOCOMOTIVE INSPECTION ACT OF FEBRUARY 17, 1911, AS AMENDED CENTRAL OF GEORGIA RAILWAY November 10, 1952 Acoident (boiler explosion) at Hclntyre, Ga,, on August 29, 1952, caused, by overheated, crown sheet due to low water. REPORT OF THE COMMISSION1 PATTERSON, Commissioner: On August ?9, 1952, about 1:10 p.m., at Mclntyre, Ga., the boiler of Central of Georgia Railway locomotive 6?S exploded while the locomotive was standing on the house track. The engi­ neer and. fireman were seriously injured. lUnder authority of sect: on 17 (2) of the Interstate Commerce Act the above-entitled proceeding was referred by the Commission to Commissioner Patterson for consideration and disposition. - 3 - DESCRIPTION OF ACCIDENT Central of Georgia Railway locomotive 629 wan placed in service at Gordon, Ga,, at 7:30 a.m., August 29, 1952, on the Gordon switch local which regularly performs switching service at four kaolin mines at and between Gordon ana Mclntyre, Ga,, a station 8.9 miles ca?t of Gordon, After switching at two mines the train proceeded, without any known unusual incident, one mile to Nolntyre where the train, consisting of 3 loaded ana 4 empty cars, was placed-on a siding and the locomotive moved to the house track.
    [Show full text]
  • Progress in Nuclear Energy 105 (2018) 83–98
    Progress in Nuclear Energy 105 (2018) 83–98 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Technology perspectives from 1950 to 2100 and policy implications for the T global nuclear power industry Victor Nian Energy Studies Institute, National University of Singapore, Singapore ARTICLE INFO ABSTRACT Keywords: There have been two completed phases of developments in nuclear reactor technologies. The first phase is the Nuclear industry trends demonstration of exploratory Generation I reactors. The second phase is the rapid scale-up of Generation II Nuclear energy policy reactors in North America and Western Europe followed by East Asia. We are in the third phase, which is the ff Technology di usion construction of evolutionary Generation III/III+ reactors. Driven by the need for safer and more affordable New user state nuclear reactors post-Fukushima, the nuclear industry has, in parallel, entered the fourth phase, which is the International cooperation development of innovative Generation IV reactors. Through a comprehensive review of the historical reactor Advanced reactor development technology developments in major nuclear states, namely, USA, Russia, France, Japan, South Korea, and China, this study presents a projection on the future potentials of advanced reactor technologies, with particular focus on pressurized water reactors, high temperature reactors, and fast reactors, by 2100. The projected potentials provide alternative scenarios to develop insights that complement the established technology roadmaps. Findings suggest that there is no clear winner among these technologies, but fast reactors could demonstrate a new and important decision factor for emerging markets. Findings also suggest small modular reactors, espe- cially those belonging to Generation IV, as a transitional technology for developing domestic market and in- digenous technology competence for emerging nuclear states.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle
    Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle: The wheel is connected to the rod by a crank. The rod is connected to the piston rod of the steam cylinder., thereby converting the reciprocating motion of the piston rod generated by steam power into wheel rotation. - Main Parts of a steam locomotive: 1. Tender — Container holding both water for the boiler and combustible fuel such as wood, coal or oil for the fire box. 2. Cab — Compartment from which the engineer and fireman can control the engine and tend the firebox. 3. Whistle — Steam powered whistle, located on top of the boiler and used as a signalling and warning device. 4. Reach rod — Rod linking the reversing actuator in the cab (often a 'johnson bar') to the valve gear. 5. Safety valve — Pressure relief valve to stop the boiler exceeding the operating limit. 6. Generator — Steam powered electric generator to power pumps, head lights etc, on later locomotives. 7. Sand box/Sand dome — Holds sand that can be deposited on the rails to improve traction, especially in wet or icy conditions. 8. Throttle Lever — Controls the opening of the regulator/throttle valve thereby controlling the supply of steam to the cylinders. 9. Steam dome — Collects the steam at the top of the boiler so that it can be fed to the engine via the regulator/throttle valve. 10. Air pump — Provides air pressure for operating the brakes (train air brake system). 11. Smoke box — Collects the hot gas that have passed from the firebox and through the boiler tubes.
    [Show full text]
  • Steam Power Plant
    www.getmyuni.com Steam Power Plant A power plant is assembly of systems or subsystems to generate electricity, i.e., power with economy and requirements. The power plant itself must be useful economically and environmental friendly to the society. The present book is oriented to conventional as well as non-conventional energy generation. While the stress is on energy efficient system regards conventional power systems viz., to increase the system conversion efficiency the supreme goal is to develop, design, and manufacturer the non-conventional power generating systems in coming decades preferably after 2050 AD which are conducive to society as well as having feasible energy conversion efficiency and non-friendly to pollution, keeping in view the pollution act. The subject as a whole can be also stated as modern power plants for power viz electricity generation in 21st century. The word modern means pertaining to time. At present due to energy crisis the first goal is to conserve energy for future while the second step is todevelop alternative energy systems including direct energy conversion devices, with the devotion, dedication and determination remembering the phrase, “Delve and Delve Again till wade into”. CLASSIFICATION OF POWER PLANTS Power Plant 1. Conventional - Steam Engines Power Plants - S team Turbine Power Plants - Diesel Power Plants - Gas Turbine Power Plants - Hydro-Electric Power Plants - Nuclear Power Plants Thermoelectric Generator 2. Non-conventional Thermoelectric generator Fuel-cells Power Plants Photovoltaic solar cells Power S ystem MHD Power Plants Fussion Reactor N PP Power S y stem Biogas, Biomass Energy Power sy stem Geothermal Energy Wind Energy Power System Ocean Thermal energy conversion (OTEC) Wave and Tidal Wave Energ y Plantation Scheme A power plant may be defined as a machine or assembly of equipment that generates and delivers a flow of mechanical or electrical energy.
    [Show full text]
  • Self-Sustaining Thorium Boiling Water Reactors
    Project No. 11-3023 Self-Sustaining Thorium Boiling Water Reactors Reactor Concepts Dr. Ehud Greenspan University of California-Berkeley In collaboraon with: Massachuses Instute of Technology University of Michigan Brookhaven Naonal Laboratory Brian Robinson, Federal POC Temitope Taiwo, Technical POC NEUP Project # 11-3023 September 2011 to December 2014 Self-sustaining thorium boiling water reactors Summary Report Ehud Greenspan, Phillip M. Gorman, Sandra Bogetic, Jeffrey E. Seifried, Guanheng Zhang, Christopher R. Varela, Massimiliano Fratoni and Jasmina L. Vujic UC Berkeley, [email protected] Thomas Downar, Andrew Hall, Andrew Ward, Michael Jarrett, Aaron Wysocki and Yunlin Xu University of Michigan, [email protected] Mujid Kazimi, Koroush Shirvan and Alexander Mieloszyk MIT, [email protected] Michael Todosow, Nicholas Brown and Lap Cheng BNL, [email protected] 28 February 2015 1 Table of Contents Overview Page Executive summary 3 1. Introduction 7 2. The RBWR cores 7 2.1 Hitachi RBWR cores 7 2.2 Independent evaluation of the Hitachi designs 14 2.3 The incentive for thorium-based RBWR 15 2.4 The thorium-based RBWR core designs 17 3. Development of computational methods for RBWR type cores 19 3.1 3-D core simulator 20 3.2 Monte-Carlo based coupled neutronics – TH – depletion analysis capability 21 3.3 Stability and safety analysis capability 21 3.4 Fuel performance analysis capability 22 3.5 Thermal hydraulic correlations for tight lattice high void cores 24 4. Feasibility of fuel-self-sustaining RBWR-Th cores 24 4.1 Study strategy 24 4.2 RBWR-Th core designs 26 4.3 RBWR-Th safety and stability 30 4.4 RBWR-Th fuel performance 31 5.
    [Show full text]
  • Fundamentals of Nuclear Power
    Fundamentals of Nuclear Power Juan S. Giraldo Douglas J. Gotham David G. Nderitu Paul V. Preckel Darla J. Mize State Utility Forecasting Group December 2012 Table of Contents List of Figures .................................................................................................................................. iii List of Tables ................................................................................................................................... iv Acronyms and Abbreviations ........................................................................................................... v Glossary ........................................................................................................................................... vi Foreword ........................................................................................................................................ vii 1. Overview ............................................................................................................................. 1 1.1 Current state of nuclear power generation in the U.S. ......................................... 1 1.2 Nuclear power around the world ........................................................................... 4 2. Nuclear Energy .................................................................................................................... 9 2.1 How nuclear power plants generate electricity ..................................................... 9 2.2 Radioactive decay .................................................................................................
    [Show full text]