Storage Architecture and Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download File
Annex 2: List of tested and analyzed data sharing tools (non-exhaustive) Below are the specifications of the tools surveyed, as to February 2015, with some updates from April 2016. The tools selected in the context of EU BON are available in the main text of the publication and are described in more details. This list is also available on the EU BON Helpdesk website, where it will be regularly updated as needed. Additional lists are available through the GBIF resources page, the DataONE software tools catalogue, the BioVel BiodiversityCatalogue and the BDTracker A.1 GBIF Integrated Publishing Toolkit (IPT) Main usage, purpose, selected examples The Integrated Publishing Toolkit is a free open source software tool written in Java which is used to publish and share biodiversity data sets and metadata through the GBIF network. Designed for interoperability, it enables the publishing of content in databases or text files using open standards, namely, the Darwin Core and the Ecological Metadata Language. It also provides a 'one-click' service to convert data set metadata into a draft data paper manuscript for submission to a peer-reviewed journal. Currently, the IPT supports three core types of data: checklists, occurrence datasets and sample based data (plus datasets at metadata level only). The IPT is a community-driven tool. Core development happens at the GBIF Secretariat but the coding, documentation, and internationalization are a community effort. New versions incorporate the feedback from the people who actually use the IPT. In this way, users can help get the features they want by becoming involved. The user interface of the IPT has so far been translated into six languages: English, French, Spanish, Traditional Chinese, Brazilian Portuguese, Japanese (Robertson et al, 2014). -
System and Organization Controls (SOC) 3 Report Over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality
System and Organization Controls (SOC) 3 Report over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality For the Period 1 May 2020 to 30 April 2021 Google LLC 1600 Amphitheatre Parkway Mountain View, CA, 94043 650 253-0000 main Google.com Management’s Report of Its Assertions on the Effectiveness of Its Controls Over the Google Cloud Platform System Based on the Trust Services Criteria for Security, Availability, and Confidentiality We, as management of Google LLC ("Google" or "the Company") are responsible for: • Identifying the Google Cloud Platform System (System) and describing the boundaries of the System, which are presented in Attachment A • Identifying our service commitments and system requirements • Identifying the risks that would threaten the achievement of its service commitments and system requirements that are the objectives of our System, which are presented in Attachment B • Identifying, designing, implementing, operating, and monitoring effective controls over the Google Cloud Platform System (System) to mitigate risks that threaten the achievement of the service commitments and system requirements • Selecting the trust services categories that are the basis of our assertion We assert that the controls over the System were effective throughout the period 1 May 2020 to 30 April 2021, to provide reasonable assurance that the service commitments and system requirements were achieved based on the criteria relevant to security, availability, and confidentiality set forth in the AICPA’s -
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Jeffrey Dean Google Research [email protected] Abstract The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today. Introduction The past decade has seen a remarkable series of advances in machine learning (ML), and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas [LeCun et al. 2015]. Major areas of significant advances include computer vision [Krizhevsky et al. 2012, Szegedy et al. 2015, He et al. 2016, Real et al. 2017, Tan and Le 2019], speech recognition [Hinton et al. -
F1 Query: Declarative Querying at Scale
F1 Query: Declarative Querying at Scale Bart Samwel John Cieslewicz Ben Handy Jason Govig Petros Venetis Chanjun Yang Keith Peters Jeff Shute Daniel Tenedorio Himani Apte Felix Weigel David Wilhite Jiacheng Yang Jun Xu Jiexing Li Zhan Yuan Craig Chasseur Qiang Zeng Ian Rae Anurag Biyani Andrew Harn Yang Xia Andrey Gubichev Amr El-Helw Orri Erling Zhepeng Yan Mohan Yang Yiqun Wei Thanh Do Colin Zheng Goetz Graefe Somayeh Sardashti Ahmed M. Aly Divy Agrawal Ashish Gupta Shiv Venkataraman Google LLC [email protected] ABSTRACT 1. INTRODUCTION F1 Query is a stand-alone, federated query processing platform The data processing and analysis use cases in large organiza- that executes SQL queries against data stored in different file- tions like Google exhibit diverse requirements in data sizes, la- based formats as well as different storage systems at Google (e.g., tency, data sources and sinks, freshness, and the need for custom Bigtable, Spanner, Google Spreadsheets, etc.). F1 Query elimi- business logic. As a result, many data processing systems focus on nates the need to maintain the traditional distinction between dif- a particular slice of this requirements space, for instance on either ferent types of data processing workloads by simultaneously sup- transactional-style queries, medium-sized OLAP queries, or huge porting: (i) OLTP-style point queries that affect only a few records; Extract-Transform-Load (ETL) pipelines. Some systems are highly (ii) low-latency OLAP querying of large amounts of data; and (iii) extensible, while others are not. Some systems function mostly as a large ETL pipelines. F1 Query has also significantly reduced the closed silo, while others can easily pull in data from other sources. -
Google Wave Failure: Lesson Learned for Diffusion of an Online Collaboration Tool
GOOGLE WAVE FAILURE: LESSON LEARNED FOR DIFFUSION OF AN ONLINE COLLABORATION TOOL Laddawan Kaewkitipong Peter Ractham Department of Management Information Systems Thammasat Business School, Thammasat University Thailand INTRODUCTION Background and Motivation Collaboration has become increasingly important to the success of today’s enterprises. Modern organizations have been attempting to capitalize on their ability to collaborate between business units and manufacturing facilities to develop better products and services [17]. To achieve their goals, they no longer rely only on internal collaboration within their organization, but also on working closely and exchanging ideas with external partners. In other words, collaboration is viewed as a critical success factor in achieving a sustainable competitive advantage [2]. The need to collaborate is also seen in everyday’s life. A family, which has one or more family members who live abroad, might need to find a way to plan their holiday together. A group of friends who want to organize a party may need a tool to help them obtain common decisions more efficiently. As a result, many collaboration tools have been implemented to facilitate this kind of information sharing as well as decision-making tasks. Nevertheless, little has been reported on adoption success of such tools. In fact, diffusion of collaboration tools still remains as one of the most challenging problems in the area of IS research [31, 43]. Challenged by the problems and considering collaboration important activities, Google has launched many online tools to promote collaboration. Some of their popular tools are Gmail, Google Docs, and Google Calendar. An infamous tool, Google Wave, was one of the most ambitious products which many features that can help to facilitate online collaboration. -
Containers at Google
Build What’s Next A Google Cloud Perspective Thomas Lichtenstein Customer Engineer, Google Cloud [email protected] 7 Cloud products with 1 billion users Google Cloud in DACH HAM BER ● New cloud region Germany Google Cloud Offices FRA Google Cloud Region (> 50% latency reduction) 3 Germany with 3 zones ● Commitment to GDPR MUC VIE compliance ZRH ● Partnership with MUC IoT platform connects nearly Manages “We found that Google Ads has the best system for 50 brands 250M+ precisely targeting customer segments in both the B2B with thousands of smart data sets per week and 3.5M and B2C spaces. It used to be hard to gain the right products searches per month via IoT platform insights to accurately measure our marketing spend and impacts. With Google Analytics, we can better connect the omnichannel customer journey.” Conrad is disrupting online retail with new Aleš Drábek, Chief Digital and Disruption Officer, Conrad Electronic services for mobility and IoT-enabled devices. Solution As Conrad transitions from a B2C retailer to an advanced B2B and Supports B2C platform for electronic products, it is using Google solutions to grow its customer base, develop on a reliable cloud infrastructure, Supports and digitize its workplaces and retail stores. Products Used 5x Mobile-First G Suite, Google Ads, Google Analytics, Google Chrome Enterprise, Google Chromebooks, Google Cloud Translation API, Google Cloud the IoT connections vs. strategy Vision API, Google Home, Apigee competitors Industry: Retail; Region: EMEA Number of Automate Everything running -
Beginning Java Google App Engine
apress.com Kyle Roche, Jeff Douglas Beginning Java Google App Engine A book on the popular Google App Engine that is focused specifically for the huge number of Java developers who are interested in it Kyle Roche is a practicing developer and user of Java technologies and the Google App Engine for building Java-based Cloud applications or Software as a Service (SaaS) Cloud Computing is a hot technology concept and growing marketplace that drives interest in this title as well Google App Engine is one of the key technologies to emerge in recent years to help you build scalable web applications even if you have limited previous experience. If you are a Java 1st ed., 264 p. programmer, this book offers you a Java approach to beginning Google App Engine. You will explore the runtime environment, front-end technologies like Google Web Toolkit, Adobe Flex, Printed book and the datastore behind App Engine. You'll also explore Java support on App Engine from end Softcover to end. The journey begins with a look at the Google Plugin for Eclipse and finishes with a 38,99 € | £35.49 | $44.99 working web application that uses Google Web Toolkit, Google Accounts, and Bigtable. Along [1]41,72 € (D) | 42,89 € (A) | CHF the way, you'll dig deeply into the services that are available to access the datastore with a 52,05 focus on Java Data Objects (JDO), JDOQL, and other aspects of Bigtable. With this solid foundation in place, you'll then be ready to tackle some of the more advanced topics like eBook integration with other cloud platforms such as Salesforce.com and Google Wave. -
Dissecting the Evolution of the New OSN in Its First Year
Google+ or Google-? Dissecting the Evolution of the New OSN in its First Year Roberto Gonzalez, Ruben Cuevas Reza Motamedi, Reza Rejaie Universidad Carlos III de Madrid University of Oregon Leganes, Madrid, Spain Eugene, OR, US {rgonza1,rcuevas}@it.uc3m.es {motamedi,reza}@cs.uoregon.edu Angel Cuevas Telecom Sud Paris Evry, Île-de-France, France [email protected] ABSTRACT has been several official reports about the rapid growth of In the era when Facebook and Twitter dominate the market G+’s user population (400M users in Sep 2012) [1] while for social media, Google has introduced Google+ (G+) and some observers and users dismissed these claims and called reported a significant growth in its size while others called it G+ a “ghost town” [2]. This raises the following important a ghost town. This begs the question that ”whether G+ can question: “Can a new OSN such as G+ really attract a sig- really attract a significant number of connected and active nificant number of engaged users and be a relevant player users despite the dominance of Facebook and Twitter?”. in the social media market?”. A major Internet company This paper tackles the above question by presenting a de- such as Google, with many popular services, is perfectly po- tailed characterization of G+ based on large scale measure- sitioned to implicitly or explicitly require (or motivate) its ments. We identify the main components of G+ structure, current users to join its OSN. Then, it is interesting to assess characterize the key features of their users and their evolu- to what extent and how Google might have leveraged its po- tion over time. -
Spanner: Becoming a SQL System
Spanner: Becoming a SQL System David F. Bacon Nathan Bales Nico Bruno Brian F. Cooper Adam Dickinson Andrew Fikes Campbell Fraser Andrey Gubarev Milind Joshi Eugene Kogan Alexander Lloyd Sergey Melnik Rajesh Rao David Shue Christopher Taylor Marcel van der Holst Dale Woodford Google, Inc. ABSTRACT this paper, we focus on the “database system” aspects of Spanner, Spanner is a globally-distributed data management system that in particular how query execution has evolved and forced the rest backs hundreds of mission-critical services at Google. Spanner of Spanner to evolve. Most of these changes have occurred since is built on ideas from both the systems and database communi- [5] was written, and in many ways today’s Spanner is very different ties. The first Spanner paper published at OSDI’12 focused on the from what was described there. systems aspects such as scalability, automatic sharding, fault tol- A prime motivation for this evolution towards a more “database- erance, consistent replication, external consistency, and wide-area like” system was driven by the experiences of Google developers distribution. This paper highlights the database DNA of Spanner. trying to build on previous “key-value” storage systems. The pro- We describe distributed query execution in the presence of reshard- totypical example of such a key-value system is Bigtable [4], which ing, query restarts upon transient failures, range extraction that continues to see massive usage at Google for a variety of applica- drives query routing and index seeks, and the improved blockwise- tions. However, developers of many OLTP applications found it columnar storage format. -
Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report. -
Migrating Your Databases to Managed Services on Google Cloud Table of Contents
White paper June 2021 Migrating your databases to managed services on Google Cloud Table of Contents Introduction 3 Why choose cloud databases 3 The benefits of Google Cloud’s managed database services 5 Maximum compatibility for your workloads 6 For Oracle workloads: Bare Metal Solution for Oracle 8 For SQL Server workloads: Cloud SQL for SQL Server 10 For MySQL workloads: Cloud SQL for MySQL 12 For PostgreSQL workloads: Cloud SQL for PostgreSQL 14 For Redis and Memcached workloads: Memorystore 16 For Redis: Redis Enterprise Cloud 17 For Apache HBase workloads: Cloud Bigtable 19 For MongoDB workloads: MongoDB Atlas 20 For Apache Cassandra workloads: Datastax Astra 22 For Neo4j workloads: Neo4j Aura 23 For InfluxDB workloads: InfluxDB Cloud 25 Migrations that are simple, reliable, and secure 27 Assessing and planning your migration 27 Google Cloud streamlines your migrations 28 Google Cloud services and tools 28 Self-serve migration resources 28 Database migration technology partners 29 Google Professional Services 29 Systems integrators 29 Get started today 29 3 Introduction This paper is for technology decision makers, developers, architects, and DBAs. It focuses on modernizing database deployments with database services on Google Cloud. These services prioritize compatibility and simplicity of management, and include options for Oracle, SQL Server, MySQL, PostgreSQL, Redis, MongoDB, Cassandra, Neo4j, and other popular databases. To transform your business applications, consider Google Cloud native databases. For strategic applications that don’t go down, need on-demand and unlimited scalability, advanced security, and accelerated application development, Google provides the same cloud native database services that power thousands of applications at Google, including services like Google Search, Gmail, and YouTube with billions of users across the globe. -
The Pagerank Algorithm and Application on Searching of Academic Papers
The PageRank algorithm and application on searching of academic papers Ping Yeh Google, Inc. 2009/12/9 Department of Physics, NTU Disclaimer (legal) The content of this talk is the speaker's personal opinion and is not the opinion or policy of his employer. Disclaimer (content) You will not hear physics. You will not see differential equations. You will: ● get a review of PageRank, the algorithm used in Google's web search. It has been applied to evaluate journal status and influence of nodes in a graph by researchers, ● see some linear algebra and Markov chains associated with it, and ● see some results of applying it to journal status. Outline Introduction Google and Google search PageRank algorithm for ranking web pages Using MapReduce to calculate PageRank for billions of pages Impact factor of journals and PageRank Conclusion Google The name: homophone to the word “Googol” which means 10100. The company: ● founded by Larry Page and Sergey Brin in 1998, ● ~20,000 employees as of 2009, ● spread in 68 offices around the world (23 in N. America, 3 in Latin America, 14 in Asia Pacific, 23 in Europe, 5 in Middle East and Africa). The mission: “to organize the world's information and make it universally accessible and useful.” Google Services Sky YouTube iGoogle web search talk book search Chrome calendar scholar translate blogger.com Android product news search maps picasaweb video groups Gmail desktop reader Earth Photo by mr.hero on panoramio (http://www.panoramio.com/photo/1127015) 6 Google Search http://www.google.com/ or http://www.google.com.tw/ The abundance problem Quote Langville and Meyer's nice book “Google's PageRank and beyond: the science of search engine rankings”: The men in Jorge Luis Borges’ 1941 short story, “The Library of Babel”, which describes an imaginary, infinite library.