HVAC System Hygiene SOURCE 1® COIL and DUCT SPRAY

Total Page:16

File Type:pdf, Size:1020Kb

HVAC System Hygiene SOURCE 1® COIL and DUCT SPRAY HVAC System Hygiene SOURCE 1® COIL AND DUCT SPRAY Features:Feat • EPAEP registered fungistat, bacteriostat and germistat for use in HVAC systems • ForFo use on ductwork, evaporator coils, drip pans and associated air conditioning parts • ControlsCo microbiological growth and associated odors • CleanC the area, spray thoroughly and allow to dry SOURCESO 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-H-9532 SPRAY BOTTLE 32 OZ 12 *Sold*Sold by case/MLP per each SOURCE 1® COIL-BRITE Features: • Premium grade alkaline—expanding foam action • Brightens better than normal alkaline cleaners, Dilution rates from 3 to 40 parts water • Must be thoroughly rinsed with water, Contains hazardous component Potassium Hydroxide • Good ventilation, protective gloves, and eye protection required SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-BM01 PREMIUM ALKALINE 1 GAL 4 S1-BM05 PREMIUM ALKALINE 5-GAL PAIL 1 S1-BM55 PREMIUM ALKALINE 55-GAL DRUM 1 *Sold by case/MLP per each SOURCE 1® E-COIL Features:Fe • No foaming action—only attacks dirt buildup, not metal • Environmentally safe—cleans without damage to environment, personnel or equipment • Dilution rates: Condensers—4 parts water, Evaporators—8 parts water • Rinsing not required on evaporators—normal condensation will carry away dirt and contamination • May irritate eyes and skin—excessive contact should be avoided SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-EC01 NATURAL COLOR 1-GAL 4 S1-EC05 NATURAL COLOR 5-GAL PAIL 1 S1-EC55 NATURAL COLOR 55-GAL DRUM 1 *Sold by case/MLP per each SOURCE 1® MP3 COIL CLEANER Features: • Acts as a degreaser, detergent, and deodorizer • Non-acid, multi-purpose • Triple-action coil and lter cleaner SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-H-3D55 MP3 ORANGE COIL CLEANER 55 GAL 1 289 HVAC System Hygiene SOURCE 1® 3D COIL CLEANER Multi-Purpose Coil Cleaner and Brightener SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-3D01 3D COIL CLEANER 1 GAL 4 SOURCE 1® PRO-FOAM CONCENTRATE Self Rinsing Evaporator Coil Cleaner Features: • No foaming action—only attacks dirt buildup, not metal • Rinsing not required—normal condensation will carry away dirt and contamination • May irritate eyes and skin—excessive contact should be avoided, Dilution rates from 4 to 6 parts water SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-401 GREEN, EVAPORATOR 1-GAL 4 S1-405 GREEN, EVAPORATOR 5-GAL PAIL 1 S1-455 GREEN, EVAPORATOR 55-GAL DRUM 1 *Sold by case/MLP per each SOURCE 1® PRO-FOAM CONCENTRATE ACID Acid Type, Foaming, Air Cooled Condenser Cleaner & Brightener Features: • Expanding foam action • Best for brightening— makes condenser coils look new • Dilution rates from 2 to 10 parts water, Must be thoroughly rinsed with water • Contains hazardous components Hydro uoric Acid and Phosphoric Acid • Outdoor use only; protective gloves and eye and face protection required SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-501 RED, ACID TYPE 1 GAL 4 S1-505 RED, ACID TYPE 5 GAL PAIL 1 S1-555 RED, ACID TYPE 55 GAL DRUM 1 *SoldS by case/MLP per each SOURCE 1® MULTI-RATIOMULTI-RATI FOAM GUN Coil Cleaner & BrightenerBrightene Features: • Automatically mixes cleaning solutions • 5 adjustable mixing ratio settings • Excellent for cleaning A/C Condenser Coils • Quick disconnect for easy rinsing SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-FG64 MULTI-RATIO FOAM GUN 64-OZ 1 290 HVAC System Hygiene SOURCE 1® EVERCLEAN COIL COAT Cooling Coil Anti-Foulant Features: • No foaming action - only attacks dirt buildup, not metal • Dilute Self-Rinsing Base with 24 parts water - 1 quart makes over 6 gallons evaporator cleaner • Rinsing not required - normal condensation will carry away dirt and contamination SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-SR01 GREEN, EVAPORATOR 1 GAL 4 S1-SR32 GREEN, EVAPORATOR 1 QT 6 *Sold by case/MLP per each SOURCE 1® SELF RINSING SUPER CONCENTRATE Cooling Coil Anti-Foulant Features: • Water based anti-foulant for cooling coils • Forms microscopically thin coating that renders cooling surfaces self-cleaning for up to two years • Prevents fungus and similar organisms from growing in the coating SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-9901 REFILL 1 GAL 4 S1-9932 SPRAY BOTTLE 32 OZ 12 *Sold by case/MLP per each DIVERSITECH COIL CLEANERS Diversitech Pro-Blue SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-PRO-BLUE CLEANER,COIL,PRO-BLUE,1-GAL (M4) 1 GAL 4 Diversitech Pro-Brown SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-PRO-BROWN CLEANER,COIL,PRO-BROWN,1-GAL (M4) 1 GAL 4 Diversitech Pro-Red SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-PRO-RED CLEANER,COIL,PRO-RED,1-GAL (M4) 1 GAL 4 S1-PRO-RED32 CLEANER,PRO-RED PLUS,32OZ (M4) 32 OZ 4 291 HVAC System Hygiene SOURCE 1® FIN PROTECTANT Condenser Coil Coating Features: • Ideal for use on air-cooled condensers located in corrosive environments such as paper mills, chemical plants, airports, adjacent to freeways and salt air areas • Acrylic polymer coating protects aluminum, copper, brass, bronze, chrome, galvanized metal, titanium and stainless steel • Easy to use aerosol or 1-gallon can for larger job • Economical and easy to apply in the eld SOURCE 1 PART NO. DESCRIPTION PACKAGE CASE/ORDER QTY MLP $ S1-A-7901 BLUE TINT AEROSOL 20-OZ 12 S1-B-7900 CLEAR 1 GAL 4 S1-B-7901 BLUE-TINT 1 GAL 4 *Sold by case/MLP per each NU-CALGON A/C SHINE A/C Shine is specially formulated to clean and protect the painted metal surfaces of outdoor A/C condensing units. It sprays on and wipes off quickly and easily without water. Use A/C Shine on every service call. SOURCE 1 PART NO. DESCRIPTION STD PACK MLP $ S1-NC-61118 A/C SHINE 12 Air-Cooled Equipment & Filter Cleaning NU-CALGON NU-SOLVE NR® COIL CLEANER Nu-Solve NR is a ready-to-use, detergent based cleaner to aid in the removal of ef ciency-robbing grime on the condenser coil. The non-foaming specialty cleaner does not require a water rinse for situations where water availability is an issue. Nu-Solve NR is safe on plastic, metal and rubber materials. The cleaner is VOC, CARB compliant, contains no Prop. 65 compounds and ships as a non-hazmat product. Nu-Solve NR should be used when solvent based aerosol options are not economically practical, or where it is desirable to have less diluted coil cleaner on the roof when cleaning a line-up of dusty rooftop coils. Nu-Solve NR is an engineered, ready-to-use alternative than to merely spraying the coil with portable water since water alone does not address varying organic lms that caused the soils to adhere to the coil in the rst place. Nu-Solve NR emulsi es grime off the outdoor coil. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-NC-429508 NU-SOLVE NR® COIL CLEANER 1 GAL NU-CALGON BLACKHAWK COIL CLEANER Blackhawk can be used to clean coils in window air conditioners, PTAC or eld build-up systems where an expanding foam, non-fragrance coil cleaner in an aerosol format is desired. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-NC-412775 BLACKHAWK 18 OZ NU-CALGON DURACOIL COIL CLEANER A long-lasting coating for coils in corrosive environments. SOURCE 1 PART NO. DESCRIPTION STD PACK MLP $ S1-NC-408390 DURACOIL (M6) 11 OZ 292 Air-Cooled Equipment & Filter Cleaning NU-CALGON EVAP POW’R® A revolutionary “no rinse” product formulated for cleaning indoor evaporator coils. It is metal-safe, and cleans and emulsi es even themost stubborn soils and deposits. Biodegradable. Use concentrate (S1-416808 or S1-416805) at a 3:1 ratio. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-416805 EVAP POW’R-C 2.5 GAL S1-416808 EVAP POW’R-C 1 GAL NU-CALGON NU-BRITE® COOLING COIL CLEANER It’s a very effective degreaser and cleaner on condenser coils. Its high foaming characteristic will help push soil deposits out of the coil and leave a clean and bright coil. It can also be used as a kitchen degreaser by emulsifying stubborn, resistive grease deposits found on coils located in kitchens. Product should be used where thorough rinsing is possible. Biodegradable. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-429101 NU-BRITE COOLING COIL CLEANER 55 GAL S1-429105 NU-BRITE COOLING COIL CLEANER 2.5 GAL S1-429108 NU-BRITE COOLING COIL CLEANER 1 GAL S1-429118 NU-BRITE COOLING COIL CLEANER 18 OZ AEROSOL 1 NU-CALGON EVAP FOAM® NO RINSE A high performance, heavy duty coil cleaning detergent. It is formulated with special surfactants and alkaline cleaners that have been developed into a foaming, no-rinse product. Evap Foam is ideal for use on most coils, but it is particularly suited for use on cooling or evaporator coils. The aerosol can be sprayed either right side up or upside down. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-417175 EVAP FOAM NO RINSE 18 OZ AEROSOL NU-CALGON ALKA-BRITE® A non-acid, alkaline based product for brightening and cleaning air cooled condensers. It contains the best available detergents to quickly penetrate and remove greasy soils and oxidation. Its foaming helps lift greasy soils out of the coil. Biodegradable. SOURCE 1 PART NO. DESCRIPTION SIZE MLP $ S1-412008 ALKA-BRITE 1 GAL NU-CALGON CAL-BLAST® COIL CLEANER A “no rinse required” coil cleaner in a convenient aerosol package! Features: • No rinse required…high solvency cleaning • Pleasant citrus scent power that evaporates completely • Works great on all soils • Most effective on coils found in kitchens • Contains no ozone depleters • Quick drying - leaves no residue SOURCE 1 PART NO.
Recommended publications
  • Chapter 8 and 9 – Energy Balances
    CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ.
    [Show full text]
  • Industrial Wastewater: Permitted and Prohibited Discharge Reference
    Industrial Wastewater: Permitted and Prohibited Discharge Reference Department: Environmental Protection Program: Industrial Wastewater Owner: Program Manager, Darrin Gambelin Authority: ES&H Manual, Chapter 43, Industrial Wastewater SLAC’s industrial wastewater permits are explicit about the type and amount of wastewater that can enter the sanitary sewer, and all 20 permitted discharges are described in this exhibit. The permits are also explicit about which types of discharges are prohibited, and these are itemized as well. Any industrial wastewater discharges not listed below must first be cleared with the industrial wastewater (IW) program manager before discharge to the sanitary sewer. Any prohibited discharge must be managed by the Waste Management (WM) Group. (See Industrial Wastewater: Discharge Characterization Guidelines.1) Permitted Industrial Discharges Each of the twenty industrial wastewater discharges currently named in SLAC’s permits is listed below by their permit discharge number (left column) and each is described in terms of process description, location, flow, characterization, and point of discharge on the page number listed on the right. 1 Metal Finishing Pretreatment Facility 4 2 Former Hazardous Waste Storage Area Dual Phase Extraction 5 3 Low-conductivity Water from Cooling Systems 6 4 Cooling Tower Blowdown 8 5 Monitoring Well Purge Water 10 6 Rainwater from Secondary Containments 11 1 Industrial Wastewater: Discharge Characterization Guidelines (SLAC-I-750-0A16T-007), http://www- group.slac.stanford.edu/esh/eshmanual/references/iwGuideDischarge.pdf
    [Show full text]
  • Factors Affecting Indoor Air Quality
    Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s).
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]
  • Dilution Models for Effluent Discharges, Third Edition (Pages 1
    DILUTION MODELS FOR EFFLUENT DISCHARGES (Third Edition) by D.J. Baumgartner1, W.E. Frick2, and P.J.W. Roberts3 1 Environmental Research Laboratory University of Arizona, Tucson, AZ 98706 2 Pacific Ecosystems Branch, ERL-N Newport, OR 97365-5260 3 Georgia Institute of Technology Atlanta, GA 30332 March 22, 1994 Reformatted with Corel WordPerfect 8.0.0.484©, 27 Feb, 20 Nov 2000, and 10 Sep 2001 including scanned figures Word placement on pages varies slightly from the original published manuscript Walter Frick, 10 Sep 2001, USEPA ERD, Athens, GA 30605 ([email protected]) Standards and Applied Science Division Office of Science and Technology Oceans and Coastal Protection Division Office of Wetlands, Oceans, and Watersheds Pacific Ecosystems Branch, ERL-N 2111 S.E. Marine Science Drive Newport, Oregon 97365-5260 U.S. Environmental Protection Agency ABSTRACT This report describes two initial dilution plume models, RSB and UM, and a model interface and manager, PLUMES, for preparing common model input and running the models. Two farfield algorithms are automatically initiated beyond the zone of initial dilution. In addition, PLUMES incorporates the flow classification scheme of the Cornell Mixing Zone Models (CORMIX), with recommendations for model usage, thereby providing a linkage between two existing EPA systems. The PLUMES models are intended for use with plumes discharged to marine and fresh water. Both buoyant and dense plumes, single sources and many diffuser outfall configurations may be modeled. The PLUMES software accompanies this manuscript. The program, intended for an IBM compatible PC, requires approximately 200K of memory and a color monitor. The use of the model interface is explained in detail, including a user's guide and a detailed tutorial.
    [Show full text]
  • Ventilation Recommendations
    Why ventilate? • Dilute contaminants • Control or aggravate humidity • Comfort or lack of cooling • Odors • Provide oxygen History of Minimum Ventilation Recommendations smoking 60 62-89 55 50 45 40 Billings F l u g g e 35 1895 1 95 0 30 smoking 25 62-81 ASHRAE 20 Nightengale Reid ASHRAE 6 29 - 8 1865 15 1844 Yaglou 62-73 10 1936 Outdoor Air (cfm/person) Outdoor 5 Tredgold ASHRAE 62-81 1836 1825 1850 1875 1900 1925 1950 1975 2000 2500 5 equilibrium co2 4.5 sbs data 2000 4 sbs curve fit 3.5 1500 3 2.5 1000 2 SBS RtskSBS Factor Equilibrium CO2 (ppm) CO2 Equilibrium 1.5 500 1 0.5 0 0 0 20 40 60 80 100 120 Ventilation (cfm/person) Sick Building Syndrome data from Jan Sundell Swedish Office Building Study What Powers air flows? Temperature Fans Differences Wind 8ach@50 Ventilation - Albany, NY 4ach@50 2ach 0.7 2ach+hrv 4ach@50+exh 0.6 0.5 0.4 0.3 Ventilation (ACH) 0.2 0.1 0 0 60 120 180 240 300 360 Day of the Year Does it all work? • Dilution ventilation system: – Central exhaust – OA to return of AHU – HRV/ERV • Local exhaust: – Bathrooms – kitchen • Combustion devices • Clothes dryers Does It Work? Local exhaust and dilution ventilation • What speed? • Fan flows • Sound levels • Pressure drop a cross the fan • Watts • Pressure map house? – Indoors-outdoors for each mode? – CAZ More than a Fan • Exhaust vent point sources to the outside – Kitchen, bathroom, dryers (except condensing dryers), combustion devices, laundries • Provide dilution ventilation – Exhaust, supply, both • Effective distribution – Central air handlers? – Baseboard or
    [Show full text]
  • Dilution Refrigeration with Multiple Mixing Chambers
    Dilution refrigeration with multiple mixing chambers Citation for published version (APA): Coops, G. M. (1981). Dilution refrigeration with multiple mixing chambers. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR36684 DOI: 10.6100/IR36684 Document status and date: Published: 01/01/1981 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Referencing Dilution-Based Trace Humidity Generators to Primary Humidity Standards
    REFERENCING DILUTION-BASED TRACE HUMIDITY GENERATORS TO PRIMARY HUMIDITY STANDARDS P.H. Huang, G.E. Scace, J.T. Hodges National Institute of Standards and Technology, Gaithersburg, Maryland, U.S.A. ABSTRACT We describe a technique for measuring the trace humidity level delivered by a permeation-tube type moisture generator (PTMG). Mole fractions of H2O in N2 carrier gas in the range 10 nmol/mol to 100 nmol/mol were considered. The measurements are referenced to the NIST low frost-point generator (LFPG). A quartz crystal microbalance (QCM) hygrometer is used as a comparator to measure the concentration difference between the respective outputs of the PTMG and LFPG. Differences in the water vapor mole fraction of . 1 nmol/mol were observable with this technique. Systematic differences with respect to the LFPG output of (3.8 ∀ 0.9) % and (2.9 ∀ 0.7) %, were measured for two PTMG devices. 1. INTRODUCTION Water vapor present at trace levels in high-purity process gases (typically .100 nmol of H2O per mol of gas mixture) is a ubiquitous contaminant that can adversely affect the fabrication of components for semiconductor, microelectronic, and photonic devices [1]. This fact has motivated the development and application of numerous techniques for the quantitation of trace humidity levels. Despite these many options, the real-time measurement and control of trace amounts of H2O is challenging, and the prediction of an analyzer's response is usually fraught with uncertainty. In particular, sensor drift, non-linearity, hysteresis and other system-dependent effects demand that hygrometers be calibrated in the field against a transfer standard humidity generator.
    [Show full text]
  • Outgassing Properties of Vacuum Materials for Particle Accelerators Paolo Chiggiato CERN, Geneva, Switzerland
    Proceedings of the 2017 CERN–Accelerator–School course on Vacuum for Particle Accelerators, Glumslov, (Sweden) Outgassing properties of vacuum materials for particle accelerators Paolo Chiggiato CERN, Geneva, Switzerland Abstract Gas load and pumping determine the quality of vacuum systems. In particle accelerators, once leaks are excluded, outgassing of materials is an important source of gas together with degassing induced by particle beams. Understanding, predicting, and measuring gas release from materials in vacuum are among the fundamental tasks of ultrahigh-vacuum experts. The knowledge of outgassing phenomena is essential for the choice of materials and their treatments so that the required gas density is achieved in such demanding and expensive scientific instruments. This note provides the background to understand outgassing in vacuum and gives references for further study. Keywords Outgassing; vacuum technology; vacuum materials; diffusion model; adsorption isotherms; vacuum firing; polymer outgassing 1. Introduction The pressure in a given position of a vacuum vessel is obtained once the rate of gas release and the effective pumping speed [1] are known: (1) = + where is the ultimate pressure of the applied pumping system, i.e. the pressure ideally achieved without any gas load. In general, in particle accelerators, the local effective pumping speed ranges between 1 and a maximum value of the order of 1000 ℓs-1 due to the limited diameter of beampipes. On the other hand, the rate of release of significant gas species can extend over more than 10 orders of magnitude, roughly from 10-5 to 10-15 mbar ℓ s-1cm-2. Therefore, the installation of additional pumps cannot always be a remedy against the inappropriate selection of materials and their treatments.
    [Show full text]
  • So2 So So3 H2so4 Hso S H2s Hs
    CHEMISTRY RELATED TO POSSIBLE OUTGASSING SOURCES ON MARS. A. S. Wong, S. K. Atreya and N. O. Renno, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143 ([email protected]). Introduction: An earlier paper, “Chemical mark- which the surface mixing ratio of each outgassed spe- ers of possible hot spots on Mars” by A. S. Wong, S. cies is set to 100 ppm (Figure 2). The resulting mixing K. Atreya and Th. Encrenaz [1], explored the modifi- ratios and column abundances of SO2, H2S, and SO are cation of the atmosphere of Mars following an influx summarized in Table 1. All sulfur species scale more of methane, sulfur dioxide and hydrogen sulfide (CH4, or less proportionally with the amount of outgassing SO2, H2S) from any outgassing sources which are re- species. ferred to as hot spots. The feasibility of detection of the new species by Planetary Fourier Spectrometer on O2 Mars Express is reported in a subsequent paper, “At- HSO SO2 mospheric photochemistry above possible martian hot O ,HO hν O ,OH,O spots” by A. S. Wong, S. K. Atreya, V. Formisano, Th. 3 2 2 Encrenaz and N. Ignatiev [2]. This abstract is a fol- HS SO SO3 low-up on the previous two papers. Here we treat the O O3 effect of any outgassed halogens rigorously. We also hν hν O H2O make estimates of dilution factors relative to the source 2 location following convection and meridional trans- H S S H SO port. 2 2 4 The typical terrestrial outgassing species include H2O, CO2, SO2, H2S, CH4, and small amounts of halo- gens.
    [Show full text]
  • Building Air Intake and Exhaust Design
    CHAPTER 46 BUILDING AIR INTAKE AND EXHAUST DESIGN Exhaust Stack and Air Intake Design Strategies........................................................................... 46.1 Geometric Method for Estimating Stack Height ........................................................................... 46.5 Exhaust-To-Intake Dilution or Concentration Calculations......................................................... 46.7 Other Considerations.................................................................................................................. 46.10 UTDOOR air enters a building through its air intake to provide O ventilation air to building occupants. Likewise, building ex- haust systems remove air from a building and expel the contaminants to the atmosphere. If the intake or exhaust system is not well de- signed, contaminants from nearby outdoor sources (e.g., vehicle ex- haust, emergency generators, exhaust stacks on nearby buildings) or from the building itself (e.g., laboratory fume hood exhaust, plumb- ing vents) can enter the building before dilution. Poorly diluted con- taminants may cause odors, health impacts, and reduced indoor air quality. This chapter discusses proper design of exhaust stacks and placement of air intakes to avoid adverse air quality impacts. Chapter 24 of the 2017 ASHRAE Handbook—Fundamentals de- scribes wind and airflow patterns around buildings in greater detail. Related information can also be found in Chapters 9, 18, 33, 34, and 35 of this volume, Chapters 11 and 12 of the 2017 ASHRAE Hand- Fig. 1 Flow Recirculation Regions and Exhaust Parameters book—Fundamentals, and Chapters 29, 30, and 35 of the 2016 (Wilson 1982) ASHRAE Handbook—HVAC Systems and Equipment. of ganged stacks. In general, for a tight cluster to be considered as a 1. EXHAUST STACK AND AIR INTAKE single stack (i.e., to add stack momentums together) in dilution cal- DESIGN STRATEGIES culations, the stacks must be uncapped and nearly be touching the middle stack of the group.
    [Show full text]
  • Comparing Simulated and Measured Sensible and Latent Heat Fluxes Over Snow Under a Pine Canopy to Improve an Energy Balance Snowmelt Model Ϩ D
    1506 JOURNAL OF HYDROMETEOROLOGY VOLUME 9 Comparing Simulated and Measured Sensible and Latent Heat Fluxes over Snow under a Pine Canopy to Improve an Energy Balance Snowmelt Model ϩ D. MARKS,* M. REBA, J. POMEROY,# T. LINK,@ A. WINSTRAL,* G. FLERCHINGER,* AND K. ELDER& *Northwest Watershed Research Center, Agricultural Research Service, USDA, Boise, Idaho ϩDepartment of Civil Engineering, University of Idaho, Boise, Idaho #Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada @Department of Forest Resources, University of Idaho, Moscow, Idaho &Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado (Manuscript received 4 January 2007, in final form 17 March 2008) ABSTRACT During the second year of the NASA Cold Land Processes Experiment (CLPX), an eddy covariance (EC) system was deployed at the Local Scale Observation Site (LSOS) from mid-February to June 2003. The EC system was located beneath a uniform pine canopy, where the trees are regularly spaced and are of similar age and height. In an effort to evaluate the turbulent flux calculations of an energy balance snowmelt model (SNOBAL), modeled and EC-measured sensible and latent heat fluxes between the snow cover and the atmosphere during this period are presented and compared. Turbulent fluxes comprise a large component of the snow cover energy balance in the premelt and ripening period (March–early May) and therefore control the internal energy content of the snow cover as melt accelerates in late spring. Simulated snow cover depth closely matched measured values (RMS difference 8.3 cm; Nash–Sutcliff model efficiency 0.90), whereas simulated snow cover mass closely matched the few measured values taken during the season.
    [Show full text]