The Role of Adult Neurogenesis in Psychiatric and Cognitive Disorders

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Adult Neurogenesis in Psychiatric and Cognitive Disorders BRES : 44678 Model7 pp: À 129ðcol:fig: : NILÞ brain research ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com 121 122 123 124 125 126 www.elsevier.com/locate/brainres 127 128 129 Review 130 131 132 The role of adult neurogenesis in psychiatric 133 134 Q2 and cognitive disorders 135 136 Deana M Applen, Rene Solano Fonseca, Erzsebet Kokovay 137 Q1 138 University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd 139 Curl Drive, San Antonio, TX 78229, United States 140 141 142 article info abstract 143 144 Article history: Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular– Q3 145 Accepted 13 January 2016 subventricular zone (V–SVZ) and the subgranular zone (SGZ) of the hippocampal dentate 146 gyrus. Development and regulation of the V–SVZ and SGZ is unique to each brain region, 147 Keywords: but with several similar characteristics. Alterations to the production of new neurons in 148 Adult Neurogenesis neurogenic regions have been linked to psychiatric and neurodegenerative disorders. 149 Ventricular–Subventricular Zone Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and 150 Subgranular Zone can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the – 151 Neurotransmitters V SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by 152 Psychiatric Disorders neurotransmitters, particularly monoamines, in both regions suggests that aberrant 153 neurotransmitter signaling observed in psychiatric disease may play a role in the 154 pathology of these mental health disorders. Similarly, the cognitive deficits that accom- 155 pany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This 156 review explores the regulation and function of neural stem cells in rodents and humans, 157 and the involvement of factors that contribute to psychiatric and cognitive deficits. 158 This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry. 159 & 2016 Published by Elsevier B.V. 160 161 162 163 181 164 Contents 182 165 183 166 1. Introduction. ................................................................................... 2 184 167 2. Neural stem cell developmental origins and lineage .................................................... 2 185 168 3. Factors regulating neurogenesis . ................................................................. 3 186 169 4. Neurotransmitter regulation of neurogenesis .......................................................... 4 187 170 4.1. Neurotransmitter regulation of stem cells in the SGZ . ............................................4 188 171 4.2. Neurotransmitter regulation of stem cells in the V–SVZ.............................................4 189 172 4.3. Antidepressant drug actions in neurogenic regions .................................................5 190 173 5. Neurogenesis in humans. ....................................................................... 6 191 174 192 175 n 193 176 Corresponding author. Tel.: þ210 567 0725. 194 177 E-mail address: [email protected] (D. Apple). 195 178 http://dx.doi.org/10.1016/j.brainres.2016.01.023 196 179 & 0006-8993/ 2016 Published by Elsevier B.V. 197 180 Please cite this article as: Apple, D.M, et al., The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Research (2016), http://dx.doi.org/10.1016/j.brainres.2016.01.023 BRES : 44678 2 brain research ] ( ]]]]) ]]]– ]]] 198 6. Adult human neurogenesis and psychiatric disorders ................................................... 7 258 199 7. Conclusions and future perspectives. ............................................................... 7 259 200 Author information ................................................................................. 7 260 201 Acknowledgments . ................................................................................. 7 261 202 References . ....................................................................................... 7 262 203 263 204 264 205 1. Introduction rise to type C transit amplifying cells which in turn give rise 265 – 206 to type A neuroblasts. Neuroblasts then exit the V SVZ and 266 207 Neurogenesis is the process of producing new neurons from undergo extensive migration through the rostral migratory 267 208 neural stem cells (NSCs). In most brain regions, this process is stream to arrive at the olfactory bulb, where they mature into 268 209 restricted to a limited period during development, and ends GABAeric interneurons, many of which also express dopa- 269 210 shortly after birth (Gotz and Huttner, 2005; Ming and Song, mine (Alvarez-Buylla et al., 2001; Doetsch and Alvarez-Buylla, 270 211 2011; Taverna et al., 2014). However, neurogenesis is observed 1996; Doetsch et al., 1997; Ming and Song, 2011). The spatial 271 212 well into the postnatal period and throughout adulthood organization of these newborn neurons in the olfactory bulb 272 – 213 primarily in two discrete brain regions: the subgranular zone is dependent upon the location of their origin in the V SVZ, 273 – 214 (SGZ) of the dentate gyrus and the ventricular–subventricular and NSCs originating from different V SVZ microdomains 274 215 zone (V–SVZ), which lines the lateral wall of the lateral produce interneuron populations with distinct molecular 275 216 ventricles. The process of neurogenesis has been linked markers in the olfactory bulb (Merkle et al., 2014). NSCs also 276 217 behaviorally and biochemically to psychiatric disorders such give rise to oligodendrocytes and astrocytes (Doetsch et al., 277 218 as major depression, schizophrenia, and cognitive dysfunc- 2002; Lois and Alvarez-Buylla, 1993; McKay, 1997; Merkle 278 219 tion. The neurogenic cells of the hippocampus are commonly et al., 2004) however the lineage for these cells is less clear. 279 – 220 linked to psychiatric disorders, and neurogenesis is thought NSCs are tightly regulated by the niche which in the V SVZ is 280 221 to be required for a therapeutic response to antidepressant bordered on one side by ciliated ependymal cells lining the 281 222 treatment. However, neural stem cells in the V–SVZ have also lateral ventricle and on the striatal side by a vast vascular 282 223 displayed changes in function and number in psychiatric plexus. Type B NSCs span these two compartments sending 283 224 disease, age, and with increased stress levels, which are often an apical process through the ependymal layer into the 284 225 a precipitating factor in the onset of psychiatric disorders. lateral ventricle and a basal process contacting blood vessels 285 226 NSCs have been shown to respond to treatment with anti- which allows NSCs to receive molecular signals from cere- 286 fl 227 depressant and atypical antipsychotic drugs, which can brospinal uid (Kokovay et al., 2012; Sawamoto et al., 2006), 287 228 rescue diminished neurogenesis. The functional implications ependymal cells (Lim et al., 2000) and the vasculature 288 229 of decreased neurogenesis in psychiatric disease, as well as (Delgado et al., 2014; Kokovay et al., 2010; Shen et al., 2008; 289 230 the therapeutic implications of rescuing neurogenesis with Tavazoie et al., 2008). In addition to type B NSCs, microglia, 290 231 interventions, remain unclear. The emerging links between niche astrocytes, type C, and type A cells are closely 291 – 232 neurogenesis and mental health disorders support the idea assembled in the V SVZ niche between the vasculature and 292 233 that neurogenic therapies may one day enhance less effective ependymal layer. 293 234 treatments for patients suffering from major depression, In the hippocampus, type 1 NSCs are mostly quiescent, 294 235 schizophrenia, cognitive decline, and neurodegeneration. with their cell bodies in the SGZ and processes extending 295 236 Here, we provide an overview of neurogenesis in the SGZ through the granular cell layer, and a tangential process 296 237 and V–SVZ, and explore the current literature on the relation- extending through the border of the hilus and the granular 297 238 ship between psychiatric disorders, therapeutics, and adult cell layer similar to radial glia (Seri et al., 2004). Two sex 298 þ 239 neurogenesis. determining region Y-box 2 (Sox-2) populations of progeni- 299 240 tor cells are present in the hippocampus: a quiescent radial 300 241 glia-like subpopulation expressing GFAP, nestin, and brain- 301 242 2. Neural stem cell developmental origins and lipid binding protein (BLBP), and a non-radial glia-like sub- 302 243 lineage population that is more proliferative and lacks the markers 303 244 associated with radial glia (Suh et al., 2007). Once activated, 304 245 Much of our understanding of adult NSC biology has come NSCs divide asymmetrically, giving rise to a type 2 daughter 305 246 from studies in rodents, which have shown that NSCs in the cell. type 2 cells are amplifying neural progenitor cells that 306 247 SGZ and the V–SVZ share many similarities but are two lack the GFAP expression of the type 1 mother cell, but retain 307 248 distinct populations of cells that differ significantly in their expression of Nestin (Encinas et al., 2006; Filippov et al., 2003; 308 249 development, organization, and function. NSCs from both the Kempermann et al., 2004). These progenitor cells proliferate 309 250 V–SVZ and SGZ are astrocyte-like cells with morphological in close association with astrocytes and the vasculature in 310 251 similarity to mature
Recommended publications
  • NIH Public Access Author Manuscript J Neurosci
    NIH Public Access Author Manuscript J Neurosci. Author manuscript; available in PMC 2013 May 10. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Neurosci. 2008 September 10; 28(37): 9194–9204. doi:10.1523/JNEUROSCI.3314-07.2008. Noggin Expands Neural Stem Cells in the Adult Hippocampus Michael A. Bonaguidi1,2,3,6, Chian-Yu Peng1,6, Tammy McGuire1, Gustave Falciglia1,4, Kevin T. Gobeske1, Catherine Czeisler1,5, and John A. Kessler1 1Davee Department of Neurology. Northwestern University’s Feinberg School of Medicine. 303 E. Chicago Ave, Chicago, IL 60611, USA 2Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway Ave, Baltimore, MD 21205, USA 3Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway Ave, Baltimore, MD 21205, USA 4Department of Pediatrics. University of Chicago. 5721 S. Maryland Ave, Chicago, IL 60637, USA 5Cardiovascular Research Institute, UCSF. 1554 4thSt, San Francisco, CA 94158, USA Abstract New neurons are added to the adult hippocampus throughout life and contribute to cognitive functions including learning and memory. It remains unclear whether ongoing neurogenesis arises from self-renewing neural stem cells (NSC) or from multipotential progenitor cells that cannot self-renew in the hippocampus. This is largely based on observations that neural precursors derived from the subventricular zone (SVZ) can be passaged long-term whereas hippocampal subgranular zone (SGZ) precursors are rapidly depleted by passaging. We demonstrate here that high levels of BMP signaling occur in hippocampal but not SVZ precursors in vitro, and blocking BMP signaling with Noggin is sufficient to foster hippocampal cell self-renewal, proliferation, and multipotentiality using single cell clonal analysis.
    [Show full text]
  • Regulation of Adult Neurogenesis in Mammalian Brain
    International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways.
    [Show full text]
  • Orthopedic Surgery Modulates Neuropeptides and BDNF Expression at the Spinal and Hippocampal Levels
    Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels Ming-Dong Zhanga,1, Swapnali Bardea, Ting Yangb,c, Beilei Leid, Lars I. Erikssonb,e, Joseph P. Mathewd, Thomas Andreskaf, Katerina Akassogloug,h, Tibor Harkanya,i, Tomas G. M. Hökfelta,1,2, and Niccolò Terrandob,d,1,2 aDepartment of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden; bDepartment of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; cDivision of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC 27710; dDepartment of Anesthesiology, Duke University Medical Center, Durham, NC 27710; eFunction Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm 171 76, Sweden; fInstitute of Clinical Neurobiology, University of Würzburg, 97078 Wuerzburg, Germany; gGladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158; hDepartment of Neurology, University of California, San Francisco, CA 94158; and iDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria Contributed by Tomas G. M. Hökfelt, August 25, 2016 (sent for review January 18, 2016; reviewed by Jim C. Eisenach, Ronald Lindsay, Remi Quirion, and Tony L. Yaksh) Pain is a critical component hindering recovery and regaining of shown hippocampal abnormalities in animal models of neuro- function after surgery, particularly in the elderly. Understanding the pathic pain and reduced hippocampal volume in elderly patients role of pain signaling after surgery may lead to novel interventions with chronic pain (10–12). Moreover, changes in regional brain for common complications such as delirium and postoperative volume, including hippocampal and cortical atrophy, have also cognitive dysfunction.
    [Show full text]
  • Gfapd in Radial Glia and Subventricular Zone Progenitors in the Developing Human Cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A
    RESEARCH ARTICLE 313 Development 137, 313-321 (2010) doi:10.1242/dev.041632 GFAPd in radial glia and subventricular zone progenitors in the developing human cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A. Sluijs1, Lidia De Filippis3, Férechté Encha-Razavi4, Angelo L. Vescovi3, Dick F. Swaab5, Eleonora Aronica2,6 and Elly M. Hol1,* SUMMARY A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPd, was expressed specifically in these cells. To investigate whether GFAPd is also present in the precursors of SVZ astrocytes during development and whether GFAPd could play a role in the developmental process, we analyzed GFAPd expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPd is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPd in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPd is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPd-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPd was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia.
    [Show full text]
  • NEUROGENESIS in the ADULT BRAIN: New Strategies for Central Nervous System Diseases
    7 Jan 2004 14:25 AR AR204-PA44-17.tex AR204-PA44-17.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.pharmtox.44.101802.121631 Annu. Rev. Pharmacol. Toxicol. 2004. 44:399–421 doi: 10.1146/annurev.pharmtox.44.101802.121631 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on August 28, 2003 NEUROGENESIS IN THE ADULT BRAIN: New Strategies for Central Nervous System Diseases ,1 ,2 D. Chichung Lie, Hongjun Song, Sophia A. Colamarino,1 Guo-li Ming,2 and Fred H. Gage1 1Laboratory of Genetics, The Salk Institute, La Jolla, California 92037; email: [email protected], [email protected], [email protected] 2Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; email: [email protected], [email protected] Key Words adult neural stem cells, regeneration, recruitment, cell replacement, therapy ■ Abstract New cells are continuously generated from immature proliferating cells throughout adulthood in many organs, thereby contributing to the integrity of the tissue under physiological conditions and to repair following injury. In contrast, repair mechanisms in the adult central nervous system (CNS) have long been thought to be very limited. However, recent findings have clearly demonstrated that in restricted areas of the mammalian brain, new functional neurons are constantly generated from neural stem cells throughout life. Moreover, stem cells with the potential to give rise to new neurons reside in many different regions of the adult CNS. These findings raise the possibility that endogenous neural stem cells can be mobilized to replace dying neurons in neurodegenerative diseases.
    [Show full text]
  • Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone
    13078 • The Journal of Neuroscience, September 14, 2011 • 31(37):13078–13087 Development/Plasticity/Repair Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone Jessica B. Lennington,1,2 Sara Pope,1,2 Anna E. Goodheart,1 Linda Drozdowicz,1 Stephen B. Daniels,1 John D. Salamone,3 and Joanne C. Conover1,2 1Department of Physiology and Neurobiology, 2Center for Regenerative Biology, and 3Department of Psychology, University of Connecticut, Storrs, Connecticut 06269 Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson’s disease and in animal models of Parkinson’s disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.
    [Show full text]
  • Adult Neurogenesis in the Mammalian Brain: Significant Answers And
    Neuron Review Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions Guo-li Ming1,2,3,* and Hongjun Song1,2,3,* 1Institute for Cell Engineering 2Department of Neurology 3Department of Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: [email protected] (G.-l.M.), [email protected] (H.S.) DOI 10.1016/j.neuron.2011.05.001 Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining ques- tions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new tech- nologies, the adult neurogenesis field is poised to leap forward in the next decade. Introduction has been learned about identities and properties of neural Neurogenesis, defined here as a process of generating func- precursor subtypes in the adult CNS, the supporting local envi- tional neurons from precursors, was traditionally viewed to occur ronment, and sequential steps of adult neurogenesis, ranging only during embryonic and perinatal stages in mammals (Ming from neural precursor proliferation to synaptic integration of and Song, 2005).
    [Show full text]
  • P21 Restricts Neuronal Proliferation in the Subgranular Zone of the Dentate Gyrus of the Hippocampus
    p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus Robert N. Pechnick*†, Svetlana Zonis‡, Kolja Wawrowsky‡, Jonathan Pourmorady‡, and Vera Chesnokova‡§ ‡Department of Medicine, Division of Endocrinology, and *Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048; and †Brain Research Institute, University of California, Los Angeles, CA 90024 Communicated by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA, November 23, 2007 (received for review July 2, 2007) The subgranular zone (SGZ) of the dentate gyrus of the hippocam- The induction of neurogenesis might be part of the molecular pus is a brain region where robust neurogenesis continues mechanisms underlying the therapeutic effects of antidepressant throughout adulthood. Cyclin-dependent kinases (CDKs) have a treatment (8, 9). All major classes of antidepressants stimulate primary role in controlling cell division and cellular proliferation. neurogenesis in rodents (10–12) and nonhuman primates (13). p21Cip1 (p21) is a CDK inhibitor that restrains cell cycle progression. Irradiation of the brain blocks hippocampal neurogenesis and Confocal microscopy revealed that p21 is abundantly expressed in abolishes the behavioral effects of antidepressants (14). Fur- the nuclei of cells in the SGZ and is colocalized with NeuN, a marker thermore, antidepressant-induced neurogenesis requires chronic for neurons. Doublecortin (DCX) is a cytoskeletal protein that is rather than acute drug treatment, consistent with the time course primarily expressed by neuroblasts. By using FACS analysis it was of the therapeutic effects of these medications (15). The present found that, among DCX-positive cells, 42.8% stained for p21, study evaluated the role of the CDK inhibitor p21 in neurogen- indicating that p21 is expressed in neuroblasts and in newly esis.
    [Show full text]
  • Prenatal Ethanol Exposure Impairs the Formation of Radial Glial Fibers and Promotes the Transformation of Gfapδ‑Positive Radial Glial Cells Into Astrocytes
    MOLECULAR MEDICINE REPORTS 23: 274, 2021 Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes YU LI1,2*, LI‑NA ZHANG3*, LI CHONG3, YUE LIU3, FENG‑YU XI4, HONG ZHANG1 and XIANG‑LONG DUAN2,5 1Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University;2 Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology; 3The Third Department of Neurology, 4Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University; 5The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China Received July 18, 2020; Accepted January 12, 2021 DOI: 10.3892/mmr.2021.11913 Abstract. During embryonic cortical development, radial glial development. In the present study, the effects of PEE on the cells (RGCs) are the major source of neurons, and these also expression and distribution of GFAPδ during early cortical serve as a supportive scaffold to guide neuronal migration. development were assessed. It was found that PEE signifi‑ Similar to Vimentin, glial fibrillary acidic protein (GFAP) cantly decreased the expression levels of GFAP and GFAPδ. is one of the major intermediate filament proteins present in Using double immunostaining, GFAPδ was identified to be glial cells. Previous studies confirmed that prenatal ethanol specifically expressed in apical and basal RGCs, and was exposure (PEE) significantly affected the levels of GFAP co‑localized with other intermediate filament proteins, such as and increased the disassembly of radial glial fibers.
    [Show full text]
  • Effects of Alcohol Abuse on Proliferating Cells, Stem/Progenitor Cells, and Immature Neurons in the Adult Human Hippocampus
    Neuropsychopharmacology (2018) 43, 690–699 © 2018 American College of Neuropsychopharmacology. All rights reserved 0893-133X/18 www.neuropsychopharmacology.org Effects of Alcohol Abuse on Proliferating Cells, Stem/ Progenitor Cells, and Immature Neurons in the Adult Human Hippocampus 1 1 2 1 ,1 Tara Wardi Le Maître , Gopalakrishnan Dhanabalan , Nenad Bogdanovic , Kanar Alkass and Henrik Druid* 1 2 Forensic Medicine Laboratory, Department of Oncology-Pathology, Stockholm, Sweden; Neurogeriatric Clinic, Theme Aging, Karolinska University Hospital, Stockholm Sweden In animal studies, impaired adult hippocampal neurogenesis is associated with behavioral pathologies including addiction to alcohol. We hypothesize that alcohol abuse may have a detrimental effect on the neurogenic pool of the dentate gyrus in the human hippocampus. In this study we investigate whether alcohol abuse affects the number of proliferating cells, stem/progenitor cells, and immature neurons in samples from postmortem human hippocampus. The specimens were isolated from deceased donors with an on-going alcohol abuse, and from controls with no alcohol overconsumption. Mid-hippocampal sections were immunostained for Ki67, a marker for cell proliferation, Sox2, a stem/progenitor cell marker, and DCX, a marker for immature neurons. Immunoreactivity was counted in alcoholic subjects and compared with controls. Counting was performed in the three layers of dentate gyrus: the subgranular zone, the granular cell layer, and the molecular layer. Our data showed reduced numbers of all three markers in the dentate gyrus in subjects with an on-going alcohol abuse. This reduction was most prominent in the subgranular zone, and uniformly distributed across the distances from the granular cell layer. Furthermore, alcohol abusers showed a more pronounced reduction of Sox2-IR cells than DCX-IR cells, suggesting that alcohol primarily causes a depletion of the stem/progenitor cell pool and that immature neurons are secondarily affected.
    [Show full text]
  • An Implantable Human Stem Cell-Derived Tissue-Engineered
    ARTICLE https://doi.org/10.1038/s42003-021-02392-8 OPEN An implantable human stem cell-derived tissue- engineered rostral migratory stream for directed neuronal replacement John C. O’Donnell 1,2,7, Erin M. Purvis1,2,3,7, Kaila V. T. Helm1,2, Dayo O. Adewole1,2,4, Qunzhou Zhang5, ✉ Anh D. Le5,6 & D. Kacy Cullen 1,2,4 The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into 1234567890():,; lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emu- lating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. 1 Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 2 Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
    [Show full text]
  • Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 97, 703±716, June 11, 1999, Copyright 1999 by Cell Press Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain Fiona Doetsch,* Isabelle Caille ,* experimental manipulations that led to the identification Daniel A. Lim,* Jose Manuel GarcõÂa-Verdugo,² of stem cells in several tissues (Potten and Morris, 1988; and Arturo Alvarez-Buylla*³ Sprangrude et al., 1988; Cotsarelis et al., 1989). *The Rockefeller University The generation of large numbers of new neurons des- New York, New York 10021 tined for the olfactory bulb throughout adult life (Altman, ² University of Valencia 1969; Lois and Alvarez-Buylla, 1994; Doetsch and Alva- Burjassot-46100 rez-Buylla, 1996) provides an experimental opportunity Valencia for the identification of their in vivo primary precursors. Spain These new neurons are born in the SVZ, a thin layer of dividing cells that persists along the lateral wall of the lateral ventricles. A layer of epithelial cells known as Summary ependymal cells separates the SVZ from the lateral ven- tricles. SVZ neuroblasts migrate as a network of tangen- Neural stem cells reside in the subventricular zone tially oriented chains (Doetsch and Alvarez-Buylla, 1996; (SVZ) of the adult mammalian brain. This germinal re- Lois et al., 1996) that converge on the rostral migratory gion, which continually generates new neurons des- stream (RMS) to reach the olfactory bulb, where they tined for the olfactory bulb, is composed of four cell differentiate into local interneurons (Luskin, 1993; Lois types: migrating neuroblasts, immature precursors, and Alvarez-Buylla, 1994; Doetsch and Alvarez-Buylla, astrocytes, and ependymal cells.
    [Show full text]