Determination of Platinum, Palladium, Ruthenium and Iridium In

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Platinum, Palladium, Ruthenium and Iridium In View Article Online / Journal Homepage / Table of Contents for this issue Analyst, May 1995, Vol. 120 1391 Determination of Platinum, Palladium, Ruthenium and Iridium in Geological Samples by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry Using a Sodium Peroxide Fusion and Tellurium Coprecipitat ion* Jacinta Enzweilert and Philip J. Potts* Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, UK MK7 6AA Kym E. Jarvis NERC ICP-MS Facility, Centre for Analytical Research in the Environment, Imperial College at Silwood Park, Buckhurst Road, Ascot, Berkshire, UK SL5 7TE A method was developed for the determination of Ru, Pd, Ir determination of PGEs a challenge. Appropriate analytical and Pt in geological samples by isotope dilution inductively procedures generally have three steps: chemical decomposi- coupled plasma mass spectrometry. After fusion of the tion of the sample, separation of the PGEs from the matrix sample with sodium peroxide, the platinum group elements (i.e. , preconcentration) and finally elemental determination. were preconcentrated by Te coprecipitation. Results One of the most successful methods for both decomposing the obtained for the reference materials WGB-1, TDB-1, UMT- sample and concentrating the PGEs is the nickel sulfide fire 1, WPR-1, WMG-1 and SARM-7 are in excellent agreement assay procedure coupled to the high sensitivity of inductively with the recommended values for elements above the coupled plasma mass spectrometry (ICP-MS) instrumentation detection limit level of 0.3-2.0 ng g-1 (whole rock). Although for the determination ~tage~7.8later improved by an inter- the method used only 0.5 g of sample, no errors were found mediate Te coprecipitation step.9-12 The nickel sulfide fire that could be associated with sample inhomogeneity effects in assay method offers the advantage of accepting large sample the analysis of the above reference materials. Further aliquots (routinely 20-50 g), which is essential in the analysis measurements indicated that the technique could be of any sample that might contain discrete PGE minerals. In extended to the determination of Rh and Au by external such circumstances, serious sampling errors are likely to occur calibration. (caused by the 'nugget effect') if techniques that employ Keywords: Platinum group element determination; geological smaller sample masses (e.g., <1 g) are used. However, the sample; sodium peroxide fusion; isotope dilution; inductively nickel sulfide procedure has some disadvantages. One is the Published on 01 January 1995. Downloaded by UNIVERSIDAD ESTADUAL DE CAMPINAS 19/06/2015 16:35:23. coupled plasma mass spectrometry relatively large amounts of reagents used and the contribution they may make to the analytical blank unless very high purity reagents are used. Another potential difficulty is that judge- ment is required to optimize flux composition in the analysis of Introduction some sample types (e.g., chromite and sulfide-bearing samples The development of methods for the determination of the or kimberlites).13-15 A third potential difficulty is that some platinum group elements (PGEs; Ru, Rh, Pd, Os, Ir and Pt) in investigations have indicated that PGE recoveries by nickel geological samples has attracted considerable interest in sulfide fire assay may not always be quantitative, with losses recent years for several reasons. The economic importance of occurring during the fusion procedure itself16 and during these elements has stimulated the development of analytical subsequent crushing17 and dissolution of the nickel sulfide techniques appropriate for geochemical exploration and ore button.9 Alternative pi-ocedures are often used for the analysis processing. 1 However, there is also increasing academic of mantle rocks, in Os/Re isotope studies for example, where interest in the geochemistry of these elements in studies of, for geochemical and thermodynamic constraints would indicate example, mantle and metallogenetic processes273 and the that discrete PGE grains are unlikely to be present. In these Cretaceous-Tertiary boundary layer with its associated Ir circumstances, a low blank decomposition procedure is more anomaly.4 This resurgence of interest has been further important than the capability to analyse 50 g sample aliquots stimulated by the recent deve!opment of isotopic techniques and indeed, many studies have been undertaken successfully for OdRe geochronometry studies .5,6 using techniques requiring less than 1 g of sample.18-2" The low concentration of PGEs in geological samples (with In the analysis of mantle rocks, several approaches have typical background levels of a few ng g-l) makes the been used to dissolve the sample. Some of the most common are those based on acid attack (total or partia1)21322 and fusion * Presented at Geoanalysis 94: An International Symposium on the Analysis of procedures.23J4 The digestion with aqua regia in sealed Geological and Environmental Materials, Ambleside. England, September 18- tubes25926 is also being used because of its effectiveness in 22, 1994. + Present address: Universidade Estadual de Campinas, lnstituto de Geo- dissolving PGE-bearing phases and the low blank levels, the cisncias, Campinas, SP, P.O. Box 6152, CEP 13081, Brazil. latter being crucial in Re/Os geochemistry. The fusion of * To whom correspondence should be addressed. powdered samples with oxidizing fluxes such as sodium View Article Online 1392 Analyst, May 1995, Vol. 120 peroxide has been widely used both to decompose resistant by heating gently in 6 ml of 6 rnol I-' HCI. Deionized water minerals after a preliminary acid attack27 and to decompose was added to dilute the solution to a final volume of 20 ml. the entire sample in radiochemical neutron activation analysis methods.20 Indeed, fusions with oxidizing fluxes have the advantage that they are very effective in dissolving both resistant and sulfide mineral phases? However, such pro- Sample Decomposition cedures must normally be restricted to small samples, usually 1 Samples were dried at 105°C overnight and cooled in a g or less, in applications such as those referred to above where desiccator bcfore weighing. Conical crucibles made of glassy sampling errors are not likely to occur. carbon with a capacity of 60 ml (Sigri, Meitingen, Germany) In this work, a method has been developed for the were used in the sample fusion procedure. In order to protect determination of Ru, Pd, Ir and Pt using a fusion with sodium the crucible from attack by the sodium peroxide flux, a layer of peroxide to decompose the sample in glassy carbon crucibles. sodium carbonate (3.5 g) was used to line the bottom and walls After dissolution of the fused cake, the sample solution was of the crucible bcfore each fusion. Sodium peroxide (0.5 g), spiked and the PGEs were separated by Te coprecipitation sample (0.5000 g) ar *:en more sodium peroxide (1.5 g) were prior to determination of the PGEs by isotope dilution ICP- weighed into the crucible onto the sodium carbonate lining. MS. The method was applied to five Canada Centre for The sample and sodium peroxide were carefully mixed using a Mineral and Energy Technology (CANMET) PGE reference nickel spatula. The crucible was covered with a lid and materials: WGB-1 (gabbro rock), TDB-1 (diabase rock), transferred into a cold furnace. 1hc temperature of the UMT-1 (ultramafic ore tailings), WPR-1 (altered peridotite) furnace was raised to 200 "C and left for 15 min and then raised and WMG-1 (mineralized gabbro), and to the mineralized ore to 490 "C and left for 1 h. The crucible was then removed from of the South African Bureau of Standards (SARM)-7. the furnace and allowed to cool. With the crucible transferred Additional studies were carried out to evaluate the determina- into a 400 ml beaker (covered with a watch-glass) the cake was tion of the mono-isotopic elements Rh and Au by conven- dissolved in 50 ml of warm de-ionized water, swirling the tional external calibration. The fusion and Te coprecipitation contents periodically. After dissolution, the spike solution procedure described here is similar to that used in the containing Pt, Pd, Ir and Ru was added to the alkaline sample radiochemical neutron activation method of Stone and solution. The crucible was removed from the beaker using a Crocket.20 The over-all method is similar to the isotope PTFE tweezer and rinsed repeatedly with small volumes of de- dilution ICP-MS procedure described by Sen Gupta and ionized water and 6 rnol I-' HCl to ensure quantitative Gregoire.29 However, instead of using a two-stage sample transfer of the contents into the beaker. More acid was added dissolution procedure based on an initial acid attack, followed (total 45 ml) to dissolve completely the hydroxides and to by fusion of any residue with sodium peroxide, we have acidify the solution. The solution was then gently boiled for a adopted a single-stage digestion based on a sodium peroxide few minutes to destroy peroxides. Any precipitated silica was fusion and have included Pt in the list of analysed elements. removed by filtration using a Millipore filtration apparatus (with Whatman No. 4 filter-paper) and the filtrate collected in a 250 ml Pyrex filter-flask. The original beaker and the precipitate were washed with hot 1 rnol I-' HCl(20 ml), which Experimental was added to the filtrate. The filter-flask containing the solution was then heated to Reagents boiling and 2 ml of Te solution were added. The solution was Quartz-distilled HCI and sub-boiling distilled HN03 were brought back to boiling and tin(I1) chloride solution (10 ml) used in the analytical procedure. De-ionized water was used was slowly added. The solution was boiled for a few minutes and all other reagents were of analytical-reagent grade. until the black precipitate was thoroughly coagulated. At this Poly(tetrafluoroethy1ene) (PTFE), glassware and glassy car- point, more Te solution (1 ml) was added.
Recommended publications
  • Data Sheet According to 1907/2006/EC, Article 31 Printing Date 19.07.2021 Revision: 19.07.2021
    Page 1/8 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 19.07.2021 Revision: 19.07.2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking · 1.1 Product identifier · Trade name: Sodium peroxide, min. 93% (ACS) · Item number: 93-1050 · CAS Number: 1313-60-6 · EC number: 215-209-4 · Index number: 011-003-00-1 · 1.2 Relevant identified uses of the substance or mixture and uses advised against No further relevant information available. · 1.3 Details of the supplier of the safety data sheet · Manufacturer/Supplier: Strem Chemicals, Inc. 7 Mulliken Way NEWBURYPORT, MA 01950 USA [email protected] · Further information obtainable from: Technical Department · 1.4 Emergency telephone number: EMERGENCY: CHEMTREC: + 1 (800) 424-9300 During normal opening times: +1 (978) 499-1600 SECTION 2: Hazards identification · 2.1 Classification of the substance or mixture · Classification according to Regulation (EC) No 1272/2008 d~ GHS03 flame over circle Ox. Sol. 1 H271 May cause fire or explosion; strong oxidiser. d~ GHS05 corrosion Skin Corr. 1A H314 Causes severe skin burns and eye damage. · 2.2 Label elements · Labelling according to Regulation (EC) No 1272/2008 The substance is classified and labelled according to the CLP regulation. · Hazard pictograms d~d~ GHS03 GHS05 · Signal word Danger · Hazard-determining components of labelling: sodium peroxide · Hazard statements H271 May cause fire or explosion; strong oxidiser. (Contd. on page 2) GB 44.1.1 Page 2/8 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 19.07.2021 Revision: 19.07.2021 Trade name: Sodium peroxide, min.
    [Show full text]
  • (10) Patent No.: US 6458183 B1
    USOO6458183B1 (12) United States Patent (10) Patent No.: US 6,458,183 B1 Phillips et al. (45) Date of Patent: Oct. 1, 2002 (54) METHOD FOR PURIFYING RUTHENIUM FOREIGN PATENT DOCUMENTS AND RELATED PROCESSES JP 5-177137 * 7/1993 (75) Inventors: James E. Phillips, Somerville, NJ JP 10-273327 * 10/1999 (US); Len D. Spaulding, Newark, DE OTHER PUBLICATIONS (US) Translation of Japan 5-177137, Jul. 20, 1993.* Z. Naturforsch, A Method for the Preparation of Anhydrous (73) Assignee: Colonial Metals, Inc., Elkton, MD Ruthenium (VIII) Oxide, Journal of Science, 36b, 395 (US) (1981), no month. (*) Notice: Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 Primary Examiner Steven Bos U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm- Pillsbury Winthrop, LLP (57) ABSTRACT (21) Appl. No.: 09/655,307 The present invention provides a method for purifying (22) Filed: Sep. 5, 2000 ruthenium Sources to obtain high purity ruthenium metal without the need for high temperature processing, expensive Related U.S. Application Data reagents, complex Series of wet processes, or expensive (60) Provisional application No. 60/152,342, filed on Sep. 7, equipment. According to the present invention, a gas Stream 1999. including OZone (O) is brought into contact with a ruthe (51) Int. Cl. ................................................ C01G 55/00 nium Source, Such as a commercial ruthenium metal Sponge, (52) U.S. Cl. ............................................ 75/631; 75/710 in one or more reaction vessels. The OZone reacts with the (58) Field of Search .......................... 75/363, 369, 631, ruthenium present in the ruthenium Source to form ruthe 75/710 nium tetraoxide (RuO), a compound that is a gas at the reaction conditions.
    [Show full text]
  • CHEMICAL STORAGE SEGREGATION GUIDELINES Incompatible Chemicals Should Always Be Handled and Stored So That They Do Not Accidentally Come in Contact with Each Other
    Laboratory Safety Reminders January 2007 ♦ Mount Holyoke College – Environmental Health and Safety CHEMICAL STORAGE SEGREGATION GUIDELINES Incompatible chemicals should always be handled and stored so that they do not accidentally come in contact with each other. This list is not complete, nor are all compatibilities shown. These materials can react to produce excessive heat, harmful vapors, and/or other deadly reactions. Always know the hazards and incompatibilities of a chemical before using it. Chemicals Avoid Accidental Contact With Acetic acid Chromic acid, nitric acid, permanganates, peroxides Hydroxyl-containing compounds such as perchloric acid, Acetic anhydride ethylene glycol Concentrated nitric acid and sulfuric acid mixtures, peroxides (i.e. Acetone peracetic acid solution, hydrogen peroxide) Acetylene Chlorine, bromine, copper, silver, fluorine, mercury Alkali, alkaline earth and strongly electropositive metals (powered Carbon dioxide, carbon tetrachloride and other chlorinated aluminum, magnesium, sodium, hydrocarbons potassium) Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrogen Ammonia (anhydrous) fluoride Acids, metal powders, flammable liquids, chlorates, nitrates, sulfur, Ammonium nitrate finely divided organics, combustibles Aniline Nitric acid, hydrogen peroxide Arsenical compounds Any reducing agent Azides Acids Ammonia, acetylene, butadiene, butane, other petroleum gases, Bromine sodium carbide, turpentine, benzene, finely divided metals Calcium oxide Water Carbon activated Calcium hypochlorite, other
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Sodium Peroxide Hazard Summary Identification Reason for Citation How to Determine If You Are Being Exposed Workpla
    Common Name: SODIUM PEROXIDE CAS Number: 1313-60-6 RTK Substance number: 1718 DOT Number: UN 1504 Date: January 1987 Revision: May 2002 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Sodium Peroxide can affect you when breathed in. No occupational exposure limits have been established for * Contact can severely irritate and burn the skin and eyes Sodium Peroxide. This does not mean that this substance is with possible eye damage. not harmful. Safe work practices should always be followed. * Breathing Sodium Peroxide can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of WAYS OF REDUCING EXPOSURE breath. * Where possible, enclose operations and use local exhaust * Sodium Peroxide is a REACTIVE CHEMICAL and an ventilation at the site of chemical release. If local exhaust EXPLOSION HAZARD. ventilation or enclosure is not used, respirators should be worn. IDENTIFICATION * Wear protective work clothing. Sodium Peroxide is a yellowish-white powder. It is used as a * Wash thoroughly immediately after exposure to Sodium bleaching agent, disinfectant, laboratory chemical, and in the Peroxide. production of other chemicals. * Post hazard and warning information in the work area. In addition, as part of an ongoing education and training REASON FOR CITATION effort, communicate all information on the health and * Sodium Peroxide is on the Hazardous Substance List safety hazards of Sodium Peroxide to potentially exposed because it is cited by DOT and NFPA. workers. * This chemical is on the Special Health Hazard Substance List because it is REACTIVE. * Definitions are provided on page 5. HOW TO DETERMINE IF YOU ARE BEING EXPOSED The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls.
    [Show full text]
  • MSDS Material Safety Data Sheet
    For RICCA, SpectroPure, Red Bird, and Solutions Plus Brands Emergency Contact(24 hr) -- CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887 (SODIUM) ACETATE BUFFER SOLUTIONS, IRON BUFFER MSDS Material Safety Data Sheet Section 1: Chemical Product and Company Identification Catalog Number: 50, 51, 52, A-107, A000070, AX-1032, AX-1062, IX-919, R0056000, SA000070, SA000080 Product Identity: (SODIUM) ACETATE BUFFER SOLUTIONS, IRON BUFFER Manufacturer's Name: Emergency Contact(24 hr) -- CHEMTREC® RICCA CHEMICAL COMPANY LLC Domestic: 800-424-9300 International: 703-527-3887 CAGE Code: 4TCW6, 0V553, 4XZQ2 Address: Telephone Number For Information: 448 West Fork Dr 817-461-5601 Arlington, TX 76012 Date Prepared: 8/13/99 Revision: 11 Last Revised: 07/16/2013 Date Printed: 04/09/2015 5:05:40 pm Section 2. Composition/Information on Ingredients Component CAS Registry # Concentration ACGIH TLV OSHA PEL 6 - 42% (w/v) Not Available Not Available Sodium Acetate Trihydrate 6131-90-4 Not Available Not Available 10 - 50% (v/v) 10 ppm 10 ppm Acetic Acid 64-19-7 25 mg/m3 25 mg/m3 Balance Not Available Not Available Water, Deionized 7732-18-5 Not Available Not Available Section 3: Hazard Identification Emergency Overview: Danger! Corrosive liquid. May be fatal if swallowed. Causes severe burns to all areas of contact. Harmful if inhaled. Inhalation may cause lung and tooth damage. Immediately wash areas of contact with plenty of water for at least 15 minutes. If ingested, give large quantity of water. Do not induce vomiting. Target Organs: eyes, skin, respiratory system, teeth. Eye Contact: Eye contact may cause severe eye damage followed by loss of sight.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Safety Data Sheet: Sodium Peroxide
    safety data sheet according to Regulation (EC) No. 1907/2006 (REACH), amended by 2015/830/EU Sodium peroxide ≥95 %, p.a., ACS, granulated article number: 4412 date of compilation: 09.01.2017 Version: 1.0 en SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Identification of the substance Sodium peroxide Article number 4412 Registration number (REACH) This information is not available. Index No 011-003-00-1 EC number 215-209-4 CAS number 1313-60-6 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: laboratory chemical 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone: +49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data : Department Health, Safety and Environment sheet e-mail (competent person) : [email protected] 1.4 Emergency telephone number Emergency information service Poison Centre Munich: +49/(0)89 19240 SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 (CLP) Classification acc. to GHS Section Hazard class Hazard class and cat- Hazard egory state- ment 2.14 oxidising solid (Ox. Sol. 1) H271 3.2 skin corrosion/irritation (Skin Corr. 1A) H314 3.3 serious eye damage/eye irritation (Eye Dam. 1) H318 Malta (en) Page 1 / 12 safety data sheet according to Regulation (EC) No.
    [Show full text]
  • A New Method of Determination for the Trace Ruthenium in High Purity P이 Ladium by Neutron Activation Analysis
    DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 15, Number 4, 1971 Printed in Republic of Korea 방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법 원자력 연구소 화학 연구실 이 철 • 임영창 • 엄경자 서강대학교 이공대학 화학과 정구순 (1971. 5.11 接受 ) A New Method of Determination for the Trace Ruthenium in High Purity P이 ladium by Neutron Activation Analysis Chui Lee, * Yung Chang Yim, * Kyung Ja Uhm* and Koo Soon Chung** ^Chemistry Division, Atomic Energy Research Institute, Seoul, Korea. ** Department of Chemistry^ Sogang University, Seoul, Korea. (Received May 11, 고 971) 요약 고 순도 팔라듐 금속 (99.9%)에 함유된 루테늄 함량을 K4RuS7部 -) 105Rh 의 핵반응에 의하 여 생성된 N5Rh 의 방사능을 계축하므 로써 결정하였다 . 원자 로에 서 조사된 팔라듐 시료와 루테늄 표준시료를 각각 왕수 처리 및 과산화나트 륨으로 용융 시 킨다 음 如 5Rh 을 음이 온 및 양이 온 교환수지로 분리 하였다 . 팔라 듐 시 료로 부터 얻 은 KRh 의 방사능을 루테 늄 표준시료로 부터 얻 은 l^Rh 의 방사능과 비 교 하므로서 루테늄의 함량올 결정하였다 . 본 방법 으로 구한 루테 늄의 검 출한계 는 팔라듐 10 mg을 시 료로 하였을 때 약 1 ppm 이 었으며 이 검 출 감도는 102RU(偽7)103Ru의 핵반응을 사용한 종래의 방사화 분석에 비해 약 40배 더 예민하였다 . Abstract Ruthenium content in highly purified palladium metal (99.9%) was determined by counting 105Rh nuclide which was produced by 104Ru (n, 105Rh nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK H reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively.
    [Show full text]
  • Environmental Health & Safety
    Environmental Health & Safety Chemical Safety Program Chemical Segregation & Incompatibilities Guidelines Class of Recommended Incompatible Possible Reaction Examples Chemical Storage Method Materials If Mixed Corrosive Acids Mineral Acids – Separate cabinet or storage area Flammable Liquids Heat Chromic Acid away from potential water Flammable Solids Hydrogen Chloride sources, i.e. under sink Bases Hydrochloric Acid Oxidizers Gas Generation Nitric Acid Poisons Perchloric Acid Violent Phosphoric Acid Reaction Sulfuric Acid Corrosive Bases/ Ammonium Hydroxide Separate cabinet or storage area Flammable Liquids Heat Caustics Sodium Hydroxide away from potential water Flammable Solids Sodium Bicarbonate sources, i.e. under sink Acids Gas Generation Oxidizers Poisons Violent Reaction Explosives Ammonium Nitrate Secure location away from Flammable Liquids Nitro Urea other chemicals Oxidizers Picric Acid Poisons Explosion Hazard Trinitroaniline Acids Trinitrobenzene Bases Trinitrobenzoic Acid Trinitrotoluene Urea Nitrate Flammable Liquids Acetone Grounded flammable storage Acids Fire Hazard Benzene cabinet of flammable storage Bases Diethyl Ether refrigerator Oxidizers Methanol Poisons Heat Ethanol Toluene Violent Glacial Acetic Acid Reaction Flammable Solids Phosphorus Separate dry cool area Acids Fire Hazard Magnesium Bases Heat Oxidizers Violent Poisons Reaction Sodium Hypochlorite Spill tray that is separate from Reducing Agents Fire Oxidizers Benzoyl Peroxide flammable and combustible Flammables Hazard Potassium Permanganate materials Combustibles
    [Show full text]
  • Chemical Incompatibilities
    Chemical Incompatibilities Incompatibilities Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, Acetic acid perchloric acid, peroxides, permanganates Acetylene Chlorine, bromine, copper, fluorine, silver, mercury Acetone Concentrated nitric and sulfuric acid mixtures Alkali and alkaline earth metals (such as Water, carbon tetrachloride or other chlorinated hydrocarbons, powdered aluminum or magnesium, calcium, carbon dioxide, halogens lithium, sodium, potassium) Mercury (in manometers, for example), chlorine, calcium Ammonia (anhydrous) hypochlorite, iodine, bromine, hydrofluoric acid (anhydrous) Acids, powdered metals, flammable liquids, chlorates, nitrites, Ammonium nitrate sulfur, finely divided organic combustible materials Aniline Nitric acid, hydrogen peroxide Arsenical materials Any reducing agent Azides Acids Bromine See chlorine Calcium oxide Water Carbon (activated) Calcium hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Ammonium salts, acids, powdered metals, sulfur, finely divided Chlorates organic or combustible materials Acetic acid, naphthalene, camphor, glycerol, alcohol, flammable Chromic acid and chromium liquids in general Ammonia, acetylene, butadiene, butane, methane, propane (or Chlorine other petroleum gases), hydrogen, sodium carbide, benzene, finely divided metals, turpentine Chlorine dioxide Ammonia, methane, phosphine, hydrogen sulfide Copper Acetylene, hydrogen peroxide Cumene hydroperoxide Acids (organic or inorganic) Cyanides Acids Ammonium nitrate, chromic acid, hydrogen peroxide,
    [Show full text]
  • Sample Digestion Methods for the Determination of Traces of Precious Metals by Spectrometric Techniques
    ANALYTICAL SCIENCES JULY 2002, VOL. 18 737 2002 © The Japan Society for Analytical Chemistry Reviews Sample Digestion Methods for the Determination of Traces of Precious Metals by Spectrometric Techniques Maria BALCERZAK Department of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland Recent advances in digestion methods used in the analysis of precious metal samples by spectrometric techniques are reviewed. The applicability of a fire assay, a wet acid treatment, chlorination and alkaline oxidizing fusion to a quantitative recovery of metals from various materials is discussed. Data on the precious metal contents obtained by using particular digestion methods as well as UV-VIS spectrophotometry, atomic absorption spectrometry, atomic emission spectrometry and inductively coupled plasma mass spectrometry in the examination of various samples are tabulated. (Received November 26, 2001; Accepted April 4, 2002) 1 Introduction 737 5 Oxidizing Fusion 746 2 Fire Assay 738 6 Conclusions 748 3 Wet Acid Treatment 739 7 References 748 4 Chlorination 741 sensitivity, selectivity and reliability have been carried out. 1 Introduction Spectrometric techniques, ultra-violet visible (UV-VIS) spectrophotometry, atomic absorption spectrometry (both flame The members of the platinum group metals (PGM) (ruthenium, (FAAS) and graphite furnace (GFAAS) techniques), inductively rhodium, palladium, osmium, iridium and platinum) and gold coupled plasma combined with atomic emission spectrometry are called “precious” or “noble” metals. These names have (ICP-AES) or mass spectrometry (ICP-MS), are widely applied roots in the unique physical and chemical properties of the in the analysis of a variety of samples containing noble metals metals, owing to their low abundance and high economic value.
    [Show full text]