Lighting with Artificial Light 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LED Retrofit Headlamp Light Sources Ensure Legal Access to the German Automotive Market
LED Retrofit Headlamp Light Sources Ensure legal access to the German automotive market Your challenges Before September 2020, the Kraftfahrt-Bundesamt hazards. Other advantages include: (Federal Motor Transport Authority) did not permit the ■ Near-daylight luminescence for improved visibility replacement of vehicle headlamps with LED retrofit ■ Quicker response time to 100% light light sources for driving beams and passing beams in ■ Highly resistant to vibration and shock Germany, as the appropriate homologation guidelines did ■ Longer lifetime not exist. Consequently, vehicle owners could not modify ■ Higher efficiency (lm/W), fewer CO2 emissions and their old halogen lamps with LEDs and manufacturers more environmentally friendly were unable to sell LED retrofits for vehicles registered on German public roads. Why is retrofitted LED headlamp light source testing and compliance important? The advantages of headlamps equipped with All external light sources on a vehicle, such as headlights or LED retrofit brake lights, are considered “technical lighting equipment” According to a study by the Allgemeiner Deutscher and must be type approved. Any subsequent modifications Automobil-Club (ADAC), retrofitting car headlights with to the type-approved lighting equipment will have an impact LEDs offers a road traffic safety gain. This is because on the type approval of the entire vehicle, and result in the retrofitted LED headlights are more durable, have a longer loss of the operating licence for public roads. beam range and their white light improves contrast. It is therefore essential that any LED updates made to Overall, LEDs have been proven to increase driver safety headlamps are installed correctly, do not disadvantage through improved visibility and earlier detection of road other road users and meet current safety requirements. -
Introduction 1
1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl. -
Based on Bicycle Dynamic Energy
© 2021 JETIR July 2021, Volume 8, Issue 7 www.jetir.org (ISSN-2349-5162) Developing A Vehicle - Based On Bicycle Dynamic Energy 1V Dhanush Kumar, 1Pavan Yadhav, 1Naveen Reddy A, 1P M Nitesh Kumar, 2Anand Babu K 1U G Scholar, 2Assistant Professor 1,2School of Mechanical Engineering, REVA University, Bengaluru-560064, Karnataka, India. Abstract:- There are so many vehicles that came to influence in the existing world. Their operating systems are based on usual fossil fuels system. At the present sense the fossil fuel can exceed only for a certain period after that we have to go for a change to other methods. Thus we have made an attempt to design and fabricate an ultimate system (solar cycle) which would produce cheaper and effective result than the existing system. This will be very useful needs of the world. An attempt is made in the fabrication of solar powered system for a two-wheeler. The drive system of the normal cycle is not altered. This system is two in one system. The cycle is operated either by pedaling manually battery and motor driving mechanism. Index Term: Dynamo, Throttle, Pedaling, Battery, Sprocket I. Introduction:- All vehicles that are in the market cause pollution and the fuel cost is also increasing day by day. In order to compensate the fluctuating fuel cost and reducing the pollution a good remedy is needed i.e. our transporting system. Due to ignition of hydrocarbon fuels, in the vehicle, sometime difficulties such as wear and tear may be high and more attention is needed for proper maintenance. -
July 5, 1938. A. CALLSEN 2,123,133 APPARATUS for SWITCHING on the STARTER of an INTERNAL COMBUSTION ENGINE Filed Jan
July 5, 1938. A. CALLSEN 2,123,133 APPARATUS FOR SWITCHING ON THE STARTER OF AN INTERNAL COMBUSTION ENGINE Filed Jan. 25, 1937 2. Sheets-Sheet l July 5, 1938. A. CALS EN 2,123,133 APPARATUS FOR SWITCHING ON THE STARTER OF AN INTERNAL COMBUSTION ENGINE Filed Jan. 25, 1937 2. Sheets-Sheet 2 Patented July 5, 1938 2,123,133 UNITED STATES PATENT OFFICE 2,123,133 APPARATUS FOR SWITCHING ON THE STARTER OF AN INTERNAL COMBUSTION ENGINE Albert Casen, stuttgart-Botnang, Germany, as signor to Robert Bosch Gesellschaft mit be schrankter Haftung, a corporation of Ger many Application January 25, 1937, Serial No. 122,261 In Germany February 1, 1936 15 Claims. (Ch. 290-36) The invention relates to an apparatus for ing the starting exactly as When accelerating. switching on the starter of an internal combus The foot can thus be moved back even into its tion engine for use on vehicles, in which other initial position, and if desired, removed wholly elements of the vehicle control besides the starter from the pedal. 5 are operated by a common operating member. The invention is more particularly described In known apparatus of this kind, the clutch With reference to the accompanying drawings, in pedal or accelerator pedal is connected with the Which:- SWitch of the starter by a clutch which is engaged Figure 1 is a diagrammatic view of One arrange when the engine is stopped, while it is released ment of switch control apparatus. 0 by the vacuum of the engine induction pipe or Figures 2, 3, and 4 are similar views of alter 10 by a relay fed from the lighting dynamo when native constructions. -
Operator's Manual
OPERATOR'S MANUAL MODELS GR2020G GR2120 GR2120AU G R 2 0 2 0 G · G R 2 1 2 0 · G R 2 1 2 0 1BDAHAOAP0580 A AS . D . 1 - 1 . - . AK Code No. K1270-7122-1 U READ AND SAVE THIS MANUAL PRINTED IN U.S.A. © KUBOTA Corporation 2014 ABBREVIATION LIST Abbreviations Definitions API American Petroleum Institute PTO Power Take Off PT Permanent Type (=Ethylene glycol anti-freeze) rpm Revolutions Per Minute SAE Society of Automotive Engineers KRA Kubota Reverse Awareness System KUBOTA Corporation is ··· Since its inception in 1890, KUBOTA Corporation has grown to rank as one of the major firms in Japan. UNIVERSAL SYMBOLS To achieve this status, the company has through the years diversified the range of its products and services to a remarkable As a guide to the operation of your tractor, various universal symbols have been utilized on the instruments and extent. Nineteen plants and 16,000 employees produce over 1,000 controls. The symbols are shown below with an indication of their meaning. different items, large and small. All these products and all the services which accompany them, Safety Alert Symbol Coolant Temperature however, are unified by one central commitment. KUBOTA makes products which, taken on a national scale, are basic necessities. Gasoline Fuel Mower-Lowered position Products which are indispensable. Products which are intended to help individuals and nations fulfill the potential inherent in their Diesel Fuel Mower-Raised position environment. KUBOTA is the Basic Necessities Giant. Brake Headlight This potential includes water supply, food from the soil and from the sea, industrial development, architecture and construction, Parking Brake Headlight-ON transportation. -
Comparison of Colorimetric, Fluorescence and Luminescence Analysis
www.aladdin-e.com Comparison of colorimetric, fluorescence and luminescence analysis Introduction 25°C, and 37°C, Over the years, the enzyme immunoassay that greater than six months shelf life when stored Engvall and Perlmann first described has taken at 4°C, many different forms. Today there are commercially available, heterogeneous, homogeneous, cell-based, capable of being conjugated to an antigen or colorimetric, fluorescent and luminescent, to antibody, name just a few, versions of the original ELISA. inexpensive, They all have antibody-antigen complexes and easily measurable activity, enzyme reactions in common. In this technical high substrate turnover number, bulletin, we here will focus on the enzyme linked unaffected by biological components of the immunosorbent assay and discuss three types of assay. detection systems — colorimetric, fluorescent, and luminescent. By far, the two most popular enzymes are All ELISA, regardless of the detection system peroxidase and alkaline phosphatase. Each has employed, require the immobilization of an their advantages and disadvantages. Both are antigen or antibody to a surface. They also quite stable when handled and stored properly, require the use of an appropriate enzyme label and both can be stored at 4°C for greater than 6 and a matching substrate that is suitable for the months. Both are also commercially available as detection system being used. Associated with the free enzymes and as enzyme conjugates (enzyme enzyme-substrate reaction are several labeled antibodies, etc.) and are relatively requirements, such as timing and development inexpensive. However, there are some differences conditions, that need to be optimized to result in between these two enzymes that should be a precise, accurate and reproducible assay. -
History of Electric Light
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal -
Request to Renew Exemption 1(A)
Request to renew Exemption 1(a) under the RoHS Directive 2011/65/EU Mercury in single-capped (compact) fluorescent lamps below 30 W Date: January 15, 2015 LIGHTINGEUROPE Contents Contents ................................................................................................................... 2 1 Name and contact details ................................................................................. 4 2 Reason for application ...................................................................................... 4 3 Summary of the exemption request .................................................................. 4 4 Technical description of the exemption request ................................................ 7 4.1 Description of the lamps and their applications .................................................. 7 4.1.1 Lamps covered by this exemption .................................................................. 7 4.1.2 Applications covered by this exemption .......................................................... 8 4.1.3 Annex I category covered by this exemption ................................................ 10 4.2 Description of the substance ............................................................................ 11 4.2.1 Substance covered by this exemption .......................................................... 11 4.2.2 Function of mercury in lamps ....................................................................... 11 4.2.3 Location of mercury in lamps....................................................................... -
Powering the Electric Vehicle with a Dynamo Using Wind Energy
JOURNAL OF CRITICAL REVIEWS ISSN- 2394-5125 VOL 7, ISSUE 19, 2020 POWERING THE ELECTRIC VEHICLE WITH A DYNAMO USING WIND ENERGY Mr. Kamalpreet Singh1, Dr. Harbinder Singh2, Dr. Harpal Singh3, Dr. Mohit Srivastava4 1Computer Science Engineering, Chandigarh Engineering College, Landran, Mohali, India. 2,3,4Electronics and Communication Engineering Department, Chandigarh Engineering College, Landran, Mohali, India. E-mail: [email protected], [email protected], [email protected], [email protected] Received: 14 March 2020 Revised and Accepted: 8 July 2020 ABSTRACT: The main objective of this paper is to represent a method for powering the electric car with a dynamo using wind energy. We want to solve the major disadvantage faced by an electric vehicle that is the discharge of the battery in case there is no power source. In case there is no power station nearby then electric vehicle can’t reach its desired destination. To solve this problem dynamo can be used. Dynamo is a device that converts mechanical energy into electric energy. Hence by using this property of a dynamo, this problem can be solved. The description of this technique is placing a dynamo behind the radiator and fan in front of the radiator. A hole is created at the centre of the radiator to connect the dynamo with the fan using a shaft. Due to locomotion of a car fan will rotate and current will be produced with the help of a dynamo. This technique has one more benefit that is efficiency of heat dissipation from the radiator will increase with the help of a fan. -
Tips for Improved Luminescence Performance Getting the Most of out of Your Biotek Reader
Tips for Improved Luminescence Performance Getting the Most of Out of Your BioTek Reader In order to achieve the best possible luminescence results from your BioTek microplate reader, several different parameters must be addressed. While there are an infinite number of possible combinations, addressing just a few key issues will greatly increase the likelihood of experimental success. In this technical note, we describe some of those issues and parameters. Introduction BioTek offers two reader series capable of measuring fluorescence: the Synergy HT and the FLx800. Depending on the model and type the end user will be able to perform various luminescent reactions. For example, only those readers configured with injectors have the capability to perform flash luminescence assays, while virtually all the luminescent capable readers can perform glow assays. Listed below are several different parameters, which may or may not apply to any one specific reader. Getting Started Plate Type: The type of plate used does matter. Opaque white plates have been shown to provide the best performance for luminescence assays, as they maximize the signal. Other plates can be used, such as white sided with clear bottom if necessary. Solid black plates will also work, but the signal will be significantly reduced. Quality plates should not allow any light leakage through the walls of the microplate. Filter Wheel Settings: In order to prevent any stray light from entering the optical path, an opaque plug is located in the excitation wheel in lieu of an excitation filter. Generally an open aperture on the emission filter wheel is used when performing luminescence measurements. -
Monitoring Internal Combustion Engines by Neural Network Based Virtual Sensing
Monitoring Internal Combustion Engines by Neural Network Based Virtual Sensing R.J.Howlett, M.M.de Zoysa, S.D.Walters Transfrontier Centre for Automotive Research (TCAR), Engineering Research Centre, University of Brighton, Brighton, U.K. Email [email protected] Abstract Over the past two decades the manufacturers of internal-combustion engines that are used in motor vehicles have been very successful in reducing the harmful side-effects of their products on the environment. However, they are under ever-increasing pressure to achieve further reductions in the quantities of polluting gases emitted by the engine, and a decrease in the amount of fuel consumed per kilometre. At the same time, vehicle characteristics that are desirable to the driver must not be compromised. Satisfying these diverse requirements requires precise engine control and comprehensive monitoring of the operational parameters of the power unit. Engines are highly price- sensitive, and it is desirable to achieve the increased level of measurement that is required for enhanced control without additional sensory devices. Thus, the indirect estimation of quantities of interest using virtual-sensor techniques, without direct measurement using dedicated sensors, is a research area with considerable potential. Intelligent-systems techniques, such as neural-networks, are attractive for application in this area because of their capabilities in pattern- recognition, signal analysis and interpretation. For this reason, the use of neural-networks in the monitoring and control of motor-vehicle engines is an area of research which is receiving increasing attention from both the academic and commercial research communities. A virtual-sensor technique, the Virtual Lambda Sensor, is described here which uses a neural-network for the estimation of air-fuel ratio in the engine. -
Electroluminescence Vs. Photoluminescence
Electroluminescence vs. Photoluminescence This application note presents a brief comparison in characterization of light-emitting material such as GaN using electroluminescence and photoluminescence. In photoluminescence (PL), excess carriers (electrons and holes) are photo-excited by exposure to a sufficiently intense light source, and the luminescence emitted from the radiative recombination of these photo-excited carriers. PL mapping combines conventional PL with a scanning stage. Both the intensity and the peak wavelength uniformity across the whole wafer can thus be acquired and used for evaluation. Electroluminescence (EL) is similar to photoluminescence, except that in electroluminescence the excess carriers are produced by current injection and it is usually measured on finished device. The photoluminescence is mainly determined by the optical properties of the material, while the electroluminescence is determined by a number of factors such as the optical properties and physical structures of the optically active layers, the electrical properties of two conductive regions which are used for cathode and anode contacts, and the properties of the electrical contacts through which the electrical current injected. It is well known that photoluminescence is not equivalent to electroluminescence. High photo-luminescence efficiency is necessary but not sufficient for good light-emitting materials or wafers. A wafer with high photoluminescence efficiency may or may not exhibit high electroluminescence efficiency and hence good light emitting diodes (LEDs). The different emission mechanism between PL and EL could also result in huge emission wavelength/intensity change. It has been reported that, at least in green LED, top contact layer could change the MQW PL emissions dramatically, and EL spectra from the fabricated devices were very different from the MQW PL measurements.