Multi-Discipline Review

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Discipline Review CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 211723Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA 211723 NME - Multi-disciplinary Review and Evaluation TAZVERIK (tazemetostat) NDA/BLA Multi-Disciplinary Review and Evaluation Application Type New Molecular Entity/ Original New Drug Application Application Number(s) NDA 211723 Priority or Standard Priority Submit Date(s) May 23, 2019 Received Date(s) May 23, 2019 PDUFA Goal Date January 23, 2020 Division/Office Office of Oncologic Diseases / Division of Oncology 3 Established/Proper Name tazemetostat (Proposed) Trade Name TAZVERIK Code Name EPZ-6438, E7438 Pharmacologic Class methyltransferase inhibitor Applicant Epizyme, Inc. Doseage form Tablets, 200mg Applicant proposed Dosing 800 mg orally twice daily (BID) Regimen Applicant Proposed For the treatment of patients with metastatic or locally Indication(s)/Population(s) advanced epithelioid sarcoma who are not eligible for curative surgery Applicant Proposed Epithelioid sarcoma SNOMED CT Indication Disease Term for each Proposed Indication Recommendation on Accelerated approval Regulatory Action Recommended For the treatment of adults and pediatric patients aged 16 Indication(s)/Population(s) years and older with metastatic or locally advanced epithelioid sarcoma not eligible for complete resection. Recommended SNOMED Epithelioid sarcoma CT Indication Disease Term for each Indication Recommended Dosing 800 mg orally twice daily Regimen 1 Version date: April 2, 2018 Reference ID: 4550626 NDA 211723 NME - Multi-disciplinary Review and Evaluation TAZVERIK (tazemetostat) Table of Contents Table of Tables ................................................................................................................................ 5 Table of Figures ............................................................................................................................... 7 Reviewers of Multi-Disciplinary Review and Evaluation ................................................................ 9 Glossary ......................................................................................................................................... 11 1 Executive Summary ............................................................................................................... 14 Product Introduction ...................................................................................................... 14 Conclusions on the Substantial Evidence of Effectiveness ............................................ 15 Benefit-Risk Assessment ................................................................................................ 19 Patient Experience Data ................................................................................................. 23 2 Therapeutic Context .............................................................................................................. 24 Analysis of Condition ...................................................................................................... 24 Analysis of Current Treatment Options ......................................................................... 24 3 Regulatory Background ......................................................................................................... 26 U.S. Regulatory Actions and Marketing History ............................................................. 26 Summary of Presubmission/Submission Regulatory Activity ........................................ 26 4 Significant Issues from Other Review Disciplines Pertinent to Clinical Conclusions on Efficacy and Safety ................................................................................................................. 28 Office of Scientific Investigations (OSI) .......................................................................... 28 Product Quality .............................................................................................................. 28 Clinical Microbiology ...................................................................................................... 29 Devices and Companion Diagnostic Issues .................................................................... 29 5 Nonclinical Pharmacology/Toxicology................................................................................... 30 Executive Summary ........................................................................................................ 30 Referenced NDAs, BLAs, DMFs ....................................................................................... 34 Pharmacology ................................................................................................................. 34 ADME/PK ........................................................................................................................ 43 Toxicology ....................................................................................................................... 46 General Toxicology .................................................................................................. 46 Genetic Toxicology .................................................................................................. 56 Carcinogenicity ........................................................................................................ 57 Reproductive and Developmental Toxicology ........................................................ 57 Other Toxicology Studies ........................................................................................ 76 6 Clinical Pharmacology ............................................................................................................ 77 2 Version date: April 2, 2018 Reference ID: 4550626 NDA 211723 NME - Multi-disciplinary Review and Evaluation TAZVERIK (tazemetostat) Executive Summary ........................................................................................................ 77 Summary of Clinical Pharmacology Assessment ............................................................ 80 Pharmacology and Clinical Pharmacokinetics ........................................................ 80 General Dosing and Therapeutic Individualization ................................................. 80 Comprehensive Clinical Pharmacology Review ............................................................. 82 General Pharmacology and Pharmacokinetic Characteristics ................................ 82 Clinical Pharmacology Questions ............................................................................ 86 7 Sources of Clinical Data and Review Strategy ..................................................................... 100 Table of Clinical Studies ................................................................................................ 100 Review Strategy ............................................................................................................ 102 8 Statistical and Clinical and Evaluation ................................................................................. 103 Review of Relevant Individual Trials Used to Support Efficacy .................................... 103 Study EZH-202 ....................................................................................................... 103 Study Results ......................................................................................................... 107 8.1.3 Integrated Review of Effectiveness ...................................................................... 126 8.1.4 Integrated Assessment of Effectiveness ............................................................... 126 8.2 Review of Safety ........................................................................................................... 126 8.2.1 Safety Review Approach ....................................................................................... 126 8.2.2 Review of the Safety Database ............................................................................. 127 8.2.3 !ͳͷϤ̠̎͛ͩ ϖ΁ !ϢϢψζͩ͛Ϗϳδϩ ψζϏζͩ͛ψ η͛΁ͷϳ̠ !ϩϩͷϩϩώͷϏϳϩ .......................................... 128 8.2.4 Safety Results ........................................................................................................ 128 8.2.5 Analysis of Submission-Specific Safety Issues ....................................................... 137 8.2.6 Clinical Outcome Assessment (COA) Analyses Informing Safety/Tolerability ...... 137 8.2.7 Safety Analyses by Demographic Subgroups ........................................................ 137 8.2.8 Specific Safety Studies/Clinical Trials .................................................................... 139 8.2.9 Additional Safety Explorations .............................................................................. 139 8.2.10 Safety in the Postmarket Setting .......................................................................... 139 8.2.11 Integrated Assessment of Safety .......................................................................... 140 8.3 Statistical Issues ........................................................................................................... 140 8.4 Conclusions and Recommendations ............................................................................ 141 9 Advisory Committee Meeting and Other External Consultations ....................................... 144 10 Pediatrics
Recommended publications
  • Exploiting the Cancer Niche: Tumor-Associated Macrophages and Hypoxia As Promising Synergistic Targets for Nano-Based Therapy
    Accepted Manuscript Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy Vera Silva, Wafa' T. Al-Jamal PII: S0168-3659(17)30118-9 DOI: doi: 10.1016/j.jconrel.2017.03.013 Reference: COREL 8698 To appear in: Journal of Controlled Release Received date: 17 December 2016 Revised date: 5 March 2017 Accepted date: 7 March 2017 Please cite this article as: Vera Silva, Wafa' T. Al-Jamal , Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano- based therapy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Corel(2017), doi: 10.1016/j.jconrel.2017.03.013 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Exploiting the cancer niche: tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy Vera Silva1 and Wafa’ T. Al-Jamal1,* 1School of Pharmacy - University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom * To whom correspondence should be addressed: Dr W. T. Al-Jamal School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ (UK) E-mail: [email protected] ACCEPTED MANUSCRIPT 1 ACCEPTED MANUSCRIPT Abstract The tumor microenvironment has been widely exploited as an active participant in tumor progression.
    [Show full text]
  • Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy
    cells Review Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy Zhe Fu 1,2, Alexandra M. Mowday 2,3 , Jeff B. Smaill 2,3, Ian F. Hermans 1,2 and Adam V. Patterson 2,3,* 1 Malaghan Institute of Medical Research, Wellington 6042, New Zealand; [email protected] (Z.F.); [email protected] (I.F.H.) 2 Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; [email protected] (A.M.M.); [email protected] (J.B.S.) 3 Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand * Correspondence: [email protected] Abstract: The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable responses are limited to a minority of patients and malignancies, indicating the presence of underlying resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune Citation: Fu, Z.; Mowday, A.M.; response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated Smaill, J.B.; Hermans, I.F.; Patterson, with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach A.V.
    [Show full text]
  • Malignant Pleural Mesothelioma: State- Of-The-Art on Current Therapies and Promises for the Future
    Prime Archives in Cancer Research Book Chapter Malignant Pleural Mesothelioma: State- of-the-Art on Current Therapies and Promises for the Future Fabio Nicolini1, Martine Bocchini1, Giuseppe Bronte2, Angelo Delmonte2, Massimo Guidoboni3, Lucio Crinò2 and Massimiliano Mazza1* 1Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy 2Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy 3Immunotherapy and Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy *Corresponding Author: Massimiliano Mazza, Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy Published January 11, 2021 This Book Chapter is a republication of an article published by Massimiliano Mazza, et al. at Frontiers in Oncology in January 2020. (Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crinò L and Mazza M (2020) Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front. Oncol. 9:1519. doi: 10.3389/fonc.2019.01519) How to cite this book chapter: Fabio Nicolini, Martine Bocchini, Giuseppe Bronte, Angelo Delmonte, Massimo Guidoboni, Lucio Crinò, Massimiliano Mazza. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. In: Heidari A, editor. Prime Archives in Cancer Research. Hyderabad, India: Vide Leaf. 2021. 1 www.videleaf.com Prime Archives in Cancer Research © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Sarcoma Field Digests Evofosfamide Failure
    December 08, 2015 Sarcoma field digests evofosfamide failure Robin Davison The failure of the phase III study of evofosfamide in soft tissue sarcoma – which was itself only half of an unprecedented double dose of disappointment meted out to Threshold Pharmaceuticals yesterday – has left observers pondering the implications for future development in this cancer field. Most obviously, Threshold’s discontinuation of evofosfamide leaves an already thin pipeline in this indication even thinner (see table below). And the sarcoma field has never had a very strong flow of new agents. That industry pipeline for soft tissue sarcoma is now reduced to just five molecules in late-stage or pivotal studies – two in phase III and three in phase II/III – with a similar number in company-sponsored, randomised phase II studies. There are of course a number of other agents in investigator-sponsored or exploratory, single- arm studies in sarcoma, but these have been excluded from EP Vantage’s analysis as they do not, or do not yet, represent programmes working towards a regulatory approval. Curiously, the fact that evofosfamide did not show an additive benefit to doxorubicin in the pivotal study had to some extent been anticipated by investors (Event – Threshold hopes to buck the F-R rule, December 3, 2015). This was based on concerns that the study had underestimated control arm survival and thus would be underpowered to show an effect. While this may or may not have been evofosfamide’s undoing, what was unexpected was an exceptional performance in the doxorubicin-only control arm. The study showed a median overall survival of 19 months for the control arm, by far the longest seen yet for the existing agent.
    [Show full text]
  • Targeting EZH2 for the Treatment of Soft Tissue Sarcomas
    Karolak et al. J Cancer Metastasis Treat 2021;7:15 Journal of Cancer DOI: 10.20517/2394-4722.2021.05 Metastasis and Treatment Review Open Access Targeting EZH2 for the treatment of soft tissue sarcomas Magdalena Karolak1, Ian Tracy1, Janet Shipley2, Zoë S Walters1 1Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK. 2Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK. Correspondence to: Zoë S Walters, Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK. E-mail: [email protected] How to cite this article: Karolak M, Tracy I, Shipley J, Walters ZS. Targeting EZH2 for the treatment of soft tissue sarcomas. J Cancer Metastasis Treat 2021;7:15. https://dx.doi.org/10.20517/2394-4722.2021.05 Received: 7 Jan 2021 First Decision: 2 Feb 2021 Revised: 8 Feb 2021 Accepted: 25 Feb 2021 Available online: 26 Mar 2021 Academic Editor: Ian Judson Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang Abstract Soft tissue sarcomas (STS) are a heterogenous group of rare malignancies of mesenchymal origin, affecting both children and adults. The majority of STS have a poor prognosis and advanced stage at the time of diagnosis. Standard treatments for STS largely constitute tumour resection with chemotherapy and/or radiotherapy, and there has been little significant advancement in the application of novel therapies for treatment of these tumours. The current multimodal approach to therapy often leads to long-term side effects, and for some patients, resistance to cytotoxic agents is associated with local recurrence and/or metastasis.
    [Show full text]
  • Epithelioid Sarcoma—From Genetics to Clinical Practice
    cancers Review Epithelioid Sarcoma—From Genetics to Clinical Practice Anna M. Czarnecka 1,2,* , Pawel Sobczuk 1,3,* , Michal Kostrzanowski 1,4 , Mateusz Spalek 1 , Marzanna Chojnacka 5, Anna Szumera-Cieckiewicz 6,7 and Piotr Rutkowski 1 1 Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] (M.K.); [email protected] (M.S.); [email protected] (P.R.) 2 Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland 3 Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland 4 Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland 5 Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] 6 Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] 7 Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland * Correspondence: [email protected] (A.M.C.); [email protected] (P.S.) Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Epithelioid sarcoma is a mesenchymal soft tissue sarcoma often arising in the extremities, usually in young adults with a pick of incidence at 35 years of age. Epithelioid sarcoma (ES) is characterized by the loss of SMARCB1/INI1 (integrase interactor 1) or other proteins of the SWI/SNF complex.
    [Show full text]
  • Use of the Tree-Based Scan Statistic for Surveillance of Infant Outcomes Following Maternal Perinatal Medication Use Appendices: Code Lists
    Use of the Tree-Based Scan Statistic for Surveillance of Infant Outcomes Following Maternal Perinatal Medication Use Appendices: Code Lists Elizabeth A Suarez1, Michael Nguyen2, Di Zhang3, Yueqin Zhao3, Danijela Stojanovic2, Monica Munoz4, Jane Liedtka5, Abby Anderson6, Wei Liu7, Steven Bird7, Inna Dashevsky1, David Cole1, Sandra DeLuccia1, Talia Menzin1, Jennifer Noble1, Judith C Maro1 1. Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA; 2. Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD; 3. Office of Biostatistics, Center for Drug Evaluation and Research, FDA, Silver Spring, MD; 4. Division of Pharmacovigilance, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD; 5. Division of Pediatric and Maternal Health, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD; 6. Division of Bone, Reproductive, and Urologic Products, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD; 7. Division of Epidemiology, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD February 9, 2021 The Sentinel System is sponsored by the U.S. Food and Drug Administration (FDA) to proactively monitor the safety of FDA-regulated medical products and complements other existing FDA safety surveillance capabilities. The Sentinel System is one piece of FDA’s Sentinel Initiative, a long-term, multi-faceted effort to develop a national electronic system. Sentinel Collaborators include Data and Academic Partners that provide access to healthcare data and ongoing scientific, technical, methodological, and organizational expertise.
    [Show full text]
  • Tazemetostat (Tazverik™) EOCCO POLICY
    tazemetostat (Tazverik™) EOCCO POLICY Policy Type: PA/SP Pharmacy Coverage Policy: EOCCO184 Description Tazemetostat (Tazverik) is an orally administered inhibitor of methyltransferase, EZH2. Length of Authorization N/A Quantity Limits Product Name Dosage Form Indication Quantity Limit Epithelioid sarcoma, advanced or metastatic, not eligible for resection; Follicular lymphoma, relapsed or refractory, tazemetostat EZH2 mutation-positive, in 200 mg tablets 240 tablets/30 days (Tazverik) that that have received at least two therapies; Follicular lymphoma, relapsed or refractory, in those with no satisfactory alternative therapy Initial Evaluation I. Tazemetostat (Tazverik) is considered investigational when used for all conditions, including but not limited to: A. Epithelioid sarcoma B. Non-Hodgkin lymphoma, including follicular lymphoma Renewal Evaluation I. N/A 1 tazemetostat (Tazverik™) EOCCO POLICY Supporting Evidence I. Background: Epithelioid sarcoma is a very rare cancer of the soft tissue, generally seen in younger populations (average age of 27). This aggressive condition is known for recurrence, spread to locoregional lymph nodes, and eventually distant metastases. Common sites of origin include fingers, hands, forearms, feet, and other limbs. First-line management is typically surgery, with local recurrence necessitating amputation in many cases. Although, not specifically FDA-approved for epithelioid sarcoma, there are several systemic therapies used in the metastatic setting. Often, anthracycline based regimens (e.g., doxorubicin with or without ifosfamide), gemcitabine, pazopanib (Votrient), doxetaxel, sunitinib (Sutent), dacarbazine, epirubicin, and temozolomide. II. Efficacy: Tazemetostat (Tazverik) was approved on data from a Phase 2 trial. Pooled data from two cohorts, five and six (n=62, n=44), were used to support the approval. Seventy-seven percent of patients had prior surgery and 61% had prior chemotherapy.
    [Show full text]
  • Evofosfamide for Locally Advanced, Unresectable Or Metastatic Pancreatic Cancer – First Line in Combination with Gemcitabine
    Horizon Scanning Centre March 2015 Evofosfamide for locally advanced, unresectable or metastatic pancreatic cancer – first line in combination with gemcitabine SUMMARY NIHR HSC ID: 7060 Evofosfamide is intended to be used as a first line treatment option for patients with locally advanced, unresectable or metastatic (late stage) This briefing is pancreatic cancer. Evofosfamide is an intravenously administered, cytotoxic, hypoxia-activated prodrug (HAP), it is a nitromidazole-linked prodrug of based on dibromo isophoramide mustard, a potent DNA alkylator. Evofosfamide is information essentially inactive under normal oxygen levels. The trigger molecule keeps available at the time the toxin inactive until it is in the hypoxic region of the tumour so as to of research and a prevent general toxicity and it is activated by the low oxygen concentrations limited literature thus killing cells in its vicinity. Evofosfamide is administered at 340mg/m2 in search. It is not combination with 1,000mg/m2 gemcitabine, both via intravenous (IV) infusion intended to be a over 30 minutes on days 1, 8 and 15 of every 28 day cycle. definitive statement on the safety, Pancreatic cancer affects both sexes equally, with a lifetime risk of I in 77 for efficacy or men and 1 in 79 for women. In the UK, around 8,800 people were effectiveness of the diagnosed with pancreatic cancer in 2011. Pancreatic cancer has one of the health technology worst prognoses of all solid tumours with >95% of those affected dying of covered and should their disease. not be used for commercial As the majority of pancreatic cancer is diagnosed at an advanced stage, the purposes or aim of treatment is usually palliative; to improve quality of life and relieve commissioning symptoms.
    [Show full text]
  • Soft Tissue Sarcoma: an Insight on Biomarkers at Molecular, Metabolic and Cellular Level
    cancers Review Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level Serena Pillozzi 1,* , Andrea Bernini 2, Ilaria Palchetti 3 , Olivia Crociani 4, Lorenzo Antonuzzo 1,4, Domenico Campanacci 5 and Guido Scoccianti 6 1 Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; lorenzo.antonuzzo@unifi.it 2 Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; [email protected] 3 Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; ilaria.palchetti@unifi.it 4 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; olivia.crociani@unifi.it 5 Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; domenicoandrea.campanacci@unifi.it 6 Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; [email protected] * Correspondence: serena.pillozzi@unifi.it Simple Summary: Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histologi- Citation: Pillozzi, S.; Bernini, A.; cal subtypes with clinical and histopathological characteristics which are not always distinct. One of Palchetti, I.; Crociani, O.; Antonuzzo, the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers L.; Campanacci, D.; Scoccianti, G. Soft that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could Tissue Sarcoma: An Insight on help clinicians provide more effective clinical management.
    [Show full text]
  • Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: a View on Paradoxical Roles of KDM6B and EZH2
    epigenomes Review Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2 Camille Lachat 1, Michaël Boyer-Guittaut 1,2, Paul Peixoto 1,3,† and Eric Hervouet 1,2,3,†,* 1 Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, INSERM, EFS BFC, UMR1098, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; [email protected] (C.L.); [email protected] (M.B.-G.); [email protected] (P.P.) 2 DImaCell Platform, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France 3 EPIGENEXP Platform, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France * Correspondence: [email protected]; Tel.: +33-81666542 † These authors contributed equally to this work. Received: 3 December 2018; Accepted: 17 December 2018; Published: 20 December 2018 Abstract: EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines.
    [Show full text]
  • Targeting Epigenetics in Sarcomas Through EZH2 Inhibition Antoine Italiano1,2,3
    Italiano Journal of Hematology & Oncology (2020) 13:33 https://doi.org/10.1186/s13045-020-00868-4 EDITORIAL Open Access Targeting epigenetics in sarcomas through EZH2 inhibition Antoine Italiano1,2,3 Abstract Soft-tissue sarcomas represent a heterogeneous group of diseases with distinct genetic and clinical features accounting for up to 1% of cancer in adults and 15% of cancer in children. Epithelioid sarcoma is an extremely rare and aggressive tumor affecting young adults that is characterized by loss of INI1 expression. INI1 (SMARCB1, SNF5, BAF47) is a subunit of the SWI/SNF chromatin remodeling complex that opposes the enzymatic function of EZH2. When INI1 loses its regulatory function, EZH2 activity is de-regulated, allowing EZH2 to play a driving, oncogenic role. Tazemetostat, a specific EZH2 inhibitor, has just been approved for patients with advanced epithelioid sarcoma and represents a new therapeutic option in this devastating disease. Over the past three decades, outcomes of therapy have STS will develop metastatic disease. Once metastases are improved considerably for a wide range of cancers. For detected, the treatment is mainly based on palliative example, the discovery of new chemotherapeutic agents chemotherapy. Since its approval in 1974, doxorubicin and the optimization of multimodality therapies have remains nowadays the first-line standard of care and the improved the cure rate for pediatric cancers from less median survival of patients in this setting ranges be- than 10% in the 1950s to over 80% today; similarly, the tween 12 and 20 months [2]. Therefore, it is generally 5-year survival rate of testicular and breast cancer im- acknowledged that the benefits from chemotherapy in proved from 57% and 60% in the 1950s to over 96% and these diseases have reached a plateau and that new 90%, respectively, today.
    [Show full text]