B12 Production by Marine Microbial Communities and Dinoroseobacter Shibae Continuous Cultures Under Different Growth and Respiration Rates

Total Page:16

File Type:pdf, Size:1020Kb

B12 Production by Marine Microbial Communities and Dinoroseobacter Shibae Continuous Cultures Under Different Growth and Respiration Rates Vol. 83: 251–262, 2019 AQUATIC MICROBIAL ECOLOGY Published online October 30 https://doi.org/10.3354/ame01921 Aquat Microb Ecol OPENPEN ACCESSCCESS B12 production by marine microbial communities and Dinoroseobacter shibae continuous cultures under different growth and respiration rates Josué Villegas-Mendoza1,*, Ramón Cajal-Medrano2, Helmut Maske2 1UABC, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada km 106, Ensenada, Baja California CP 22860, Mexico 2CICESE, Carretera Tijuana-Ensenada No. 3918, Ensenada, Baja California CP 22860, Mexico ABSTRACT: In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the partic- ulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to −1 4.90 pmol l ) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: −1 −1 −1 −1 B12-d (0.34 ± 0.28 pmol l d ) and B12-p (5.65 ± 2.34 pmol l d ), and the B12 cell quota (900 to −1 3300 molecules cell ). In multispecies and D. shibae cultures, B12 production rates per cell in - creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers. KEY WORDS: Marine bacteria · Intracellular and dissolved B12 · Continuous cultures 1. INTRODUCTION prokaryotic and eukaryotic organisms (Sañudo- Wilhelmy et al. 2014). Approximately half of eukary- The presence and importance of organic com- otic phytoplankton are dependent on the B12 pro- pounds as regulators of plankton growth in the ocean duced by bacteria and archaea (Croft et al. 2005, has been known for almost 100 yr; one group of com- Sañudo-Wilhelmy et al. 2012, Helliwell 2017, Gómez- pounds that has been studied in detail is the group of Consarnau et al. 2018). Helliwell et al. (2016) showed B vitamins, specifically biotin (B7), thiamin (B1), and the rapid experimental adaptation of a B12-indepen- cobalamin (hereafter B12). Measurements of B12 in dent algae, Chlamydomonas reinhardtii, to a B12- the ocean have indicated sub-picomolar concentra- dependent clone. It has been suggested that euka - tions offshore and picomolar concentrations in coas - ryotic microorganisms that are now auxotrophic have tal regions (Menzel & Spaeth 1962, Okbamichael & lost the capacity to synthesize the B12-independent Sañudo-Wilhelmy 2004, Sañudo-Wilhelmy et al. methionine synthase (MetE) (Helliwell et al. 2011), 2006, Panzeca et al. 2009). Despite its low concentra- and it is possible that a similar mechanism exists for tion in seawater, B12 plays a vital role in auxotrophic prokaryotes. In this case, they would depend on the © The authors 2019. Open Access under Creative Commons by *Corresponding author: [email protected] Attribution Licence. Use, distribution and reproduction are un - restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 252 Aquat Microb Ecol 83: 251–262, 2019 enzyme methionine synthase (MetH), which requires The dissolved B12 concentration in seawater re - B12 as a cofactor. Laboratory studies have indicated sults from the balance of production to consump- that the concentration of dissolved B12 required tion, in cluding B12 degradation by photochemistry to maintain axenic algal growth ranges from sub- and other processes. There is little information picomolar and picomolar (Tang et al. 2010, Bertrand available on the cellular B12 concentration (Sañudo- et al. 2012) to 15 and 37 pmol l−1 (Kazamia et al. Wilhelmy et al. 2014). Recently, Suffridge et al. 2012). These concentrations are comparable to those (2017) measured particulate and dissolved B-vita- found in the ocean (Sañudo-Wilhelmy et al. 2014). mins in cultured marine bacteria and environmen- The literature indicates that the production of B12 is tal samples and observed that the concentration of unique to prokaryotes (Warren et al. 2002, Grossman dissolved and particulate vitamins varied between 2016). In silico analysis of microbial genomes sug- microbial communities with out a definite pattern gests that the potential to synthesize B12 is found in between these 2 pools. In the present study, our different groups of bacteria and archaea (Rodionov et goal was to obtain information that would help to al. 2003, Doxey et al. 2015, Heal et al. 2017). Genetic interpret the dissolved and particulate B12 concen- and experimental evidence has shown that some trations found in natural waters. We used natural bacterial taxa lack the de novo B12 biosynthetic path- bacterial communities that should have included way; instead, they possess salvage pathways or as- consumers and producers as well as monospecific similate extracellular B12 precursors (Burkholder & cultures of a B12 producer, Dinoroseobacter shibae, Lewis 1968, Woodson & Escalante-Semerena 2004, to explore the coupling between dissolved and Helliwell et al. 2016). Taylor & Sullivan (2008) found particulate B12 production rates, applying continu- heterotrophic bacteria communities in the ocean that ous cultures under substrate-limited growth at dif- assimilate B12 at rates proportional to their productiv- ferent slow growing rates. D. shibae was chosen ity and biomass. To maintain proportionality, the for the mono-species culture for different reasons: ratio of B12 producers and consumers in bacterial its capacity for B12 production (Wagner-Döbler et communities should be preserved. However, it is not al. 2010), and because it has been shown to be a clear how the B12 demand of the bacterial community common member of the organotrophic marine is supplied in the ocean, considering the low growth community and has the ability to supply marine −1 rates of bacterioplankton (0.05 to 0.3 d in oligo - phytoplankton with B12 in culture (Cruz-López et trophic systems and coastal waters, respectively; al. 2018). Ducklow 2000). Currently, it is difficult to estimate the potential for B12 biosynthesis in microbial communities based on 2. MATERIALS AND METHODS their taxonomic composition (Helliwell et al. 2016, Heal et al. 2017). Bertrand et al. (2011) showed that of 2.1. Culture preparation 45 sequenced strains of Vibrio genomes, only V. splendidus LGO32, and Vibrio MED222 have the All cultures were run as chemostats (Herbert et al. potential to synthesize B12. Moreover, the potential 1956), either monospecific (Dinoroseobacter shibae) for the microbial community to produce B12 is not or inoculated with natural coastal bacterial communi- only dependent on its taxonomic composition but ties. The cultures were prepared following Cajal- also on environmental conditions such as tempera- Medrano & Maske (2005). Batches of 20 l of growth ture, availability of dissolved organic matter (DOM), media were prepared from GF/F-filtered seawater cobalt, nitrogen, and iron (Bertrand et al. 2011). aged in the dark in glass containers for at least 3 mo. The B12 biosynthesis pathway is energetically ex - The seawater was collected in the California Cur- pensive, involving 30 genes and up to 3% of cellular rent. During aging, the seawater was filtered again metabolism (Roth et al. 1996, Raux et al. 2000), there- (GF/F). At the end, the seawater was bubbled with fore only a minority of healthy bacteria are expected an ozone stream for 24 h, then activated charcoal was to exude or release B12 to the sea (Provasoli 1963, added for 24 h, which was then removed by GF/F Berland et al. 1976). One probable pathway for filtration. We could not be sure that all degraded B12 microbial producers to provide B12 to auxotrophic species were removed by the activated charcoal, prokaryotes and eukaryotes is release by lysis (cell therefore we measured the dissolved B12 concentra- death, exudation, senescence, viral processes) (Wil- tion in the growth media (see below). Inorganic nutri- helm & Suttle 1999, Karl 2002, Croft et al. 2005, 2006, ents and glucose were added as an organic carbon Droop 2007). source (NH4Cl: 30 µM; KH3PO4: 5 µM; FeCl3: 0.4 µM; Villegas-Mendoza et al.: B12 production by marine bacterial communities 253 glucose: 20 µM). Subsequently, the growth media 2.2. Enumerating bacteria and VLPs was acidified by bubbling with CO2, autoclaved for by microscopic examination 1 h at 1.5 psi (~10 kPa), cooled down to room temper- ature, and bubbled with sterile air to replenish O2 Bacterial cell abundance and VLPs were deter- back to saturation. Final growth media pH ranged mined by counting randomly selected fields, using an from 8.1 to 8.3. All containers and tubing used for the epifluorescence microscope. A 20 ml sample of cul- continuous culture chemostat systems were Teflon or ture was fixed with buffered formaldehyde (2% final silicon, as described by Cajal-Medrano & Maske concentration). Then, 0.2 to 0.5 ml of the sample was (2005). Before terminating and measuring each incubated with 4’,6-diamino-2-phenylindole (DAPI; chemostat, we as sured the sterility of the growth final concentration: 1 µg ml−1) (Porter & Feig 1980) medium by inoculating it in sterile Zobell growth and immediately filtered on 0.2 µm black poly - medium (see Fig. 1 in Cajal-Medrano & Maske 2005).
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Large-Scale Computational Analysis of the Metabolism of Dinoroseobacter Shibae
    Swimming in Light: A Large-Scale Computational Analysis of the Metabolism of Dinoroseobacter shibae Rene Rex, Nelli Bill, Kerstin Schmidt-Hohagen, Dietmar Schomburg* Department of Bioinformatics and Biochemistry, Technische Universita¨t Braunschweig, Braunschweig, Germany Abstract The Roseobacter clade is a ubiquitous group of marine a-proteobacteria. To gain insight into the versatile metabolism of this clade, we took a constraint-based approach and created a genome-scale metabolic model (iDsh827) of Dinoroseobacter shibae DFL12T. Our model is the first accounting for the energy demand of motility, the light-driven ATP generation and experimentally determined specific biomass composition. To cover a large variety of environmental conditions, as well as plasmid and single gene knock-out mutants, we simulated 391,560 different physiological states using flux balance analysis. We analyzed our results with regard to energy metabolism, validated them experimentally, and revealed a pronounced metabolic response to the availability of light. Furthermore, we introduced the energy demand of motility as an important parameter in genome-scale metabolic models. The results of our simulations also gave insight into the changing usage of the two degradation routes for dimethylsulfoniopropionate, an abundant compound in the ocean. A side product of dimethylsulfoniopropionate degradation is dimethyl sulfide, which seeds cloud formation and thus enhances the reflection of sunlight. By our exhaustive simulations, we were able to identify single-gene knock-out mutants, which show an increased production of dimethyl sulfide. In addition to the single-gene knock-out simulations we studied the effect of plasmid loss on the metabolism. Moreover, we explored the possible use of a functioning phosphofructokinase for D.
    [Show full text]
  • Coral Feeding on Microalgae Assessed with Molecular Trophic Markers
    Molecular Ecology (2013) doi: 10.1111/mec.12486 Coral feeding on microalgae assessed with molecular trophic markers MIGUEL C. LEAL,*† CHRISTINE FERRIER-PAGES,‡ RICARDO CALADO,* MEGAN E. THOMPSON,† MARC E. FRISCHER† and JENS C. NEJSTGAARD† *Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, †Skidaway Institute of Oceanography, 10 Ocean Science Circle, 31411 Savannah, GA, USA, ‡Centre Scientifique de Monaco, Avenue St-Martin, 98000 Monaco, Monaco Abstract Herbivory in corals, especially for symbiotic species, remains controversial. To investi- gate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodo- monas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.
    [Show full text]
  • PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
    (seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R.
    [Show full text]
  • Microalgae Strain Catalogue
    Microalgae strain catalogue A strain selection guide for microalgae users: cultivation and chemical characteristics for high added-value products CONTENTS 1. INTRODUCTION .......................................................................................... 4 2. Strain catalogue ......................................................................................... 5 Anabaena cylindrica ........................................................................................... 6 Arthrospira platensis .......................................................................................... 8 Botryococcus braunii ........................................................................................ 10 Chlorella luteoviridis ......................................................................................... 12 Chlorella sorokiniana ........................................................................................ 14 Chlorella vulgaris .............................................................................................. 16 Dunaliella salina ............................................................................................... 18 Dunaliella tertiolecta ......................................................................................... 20 Haematococcus pluvialis .................................................................................. 22 Microcystis aeruginosa ..................................................................................... 24 Nannochloropsis occulata ...............................................................................
    [Show full text]
  • 21 Pathogens of Harmful Microalgae
    21 Pathogens of Harmful Microalgae RS. Salomon and I. Imai 2L1 Introduction Pathogens are any organisms that cause disease to other living organisms. Parasitism is an interspecific interaction where one species (the parasite) spends the whole or part of its life on or inside cells and tissues of another living organism (the host), from where it derives most of its food. Parasites that cause disease to their hosts are, by definition, pathogens. Although infection of metazoans by other metazoans and protists are the more fre quently studied, there are interactions where both host and parasite are sin gle-celled organisms. Here we describe such interactions involving microal gae as hosts. The aim of this chapter is to review the current status of research on pathogens of harmful microalgae and present future perspec tives within the field. Pathogens with the ability to impair and kill micro algae include viruses, bacteria, fungi and a number of protists (see reviews by Elbrachter and Schnepf 1998; Brussaard 2004; Park et al. 2004; Mayali and Azam 2004; Ibelings et al. 2004). Valuable information exists from non-harm ful microalgal hosts, and these studies will be referred to throughout the text. Nevertheless, emphasis is given to cases where hosts are recognizable harmful microalgae. 21.2 Viruses Viruses and virus-like particles (VLPs) have been found in more than 50 species of eukaryotic microalgae, and several of them have been isolated in laboratory cultures (Brussaard 2004; Nagasaki et al. 2005). These viruses are diverse both in size and genome type, and some of them infect harmful algal bloom (HAB)-causing species (Table 21.1).
    [Show full text]
  • Boosted Membrane Potential As Bioenergetic Response to Anoxia in Dinoroseobacter Shibae
    fmicb-08-00695 April 17, 2017 Time: 12:23 # 1 ORIGINAL RESEARCH published: 20 April 2017 doi: 10.3389/fmicb.2017.00695 Boosted Membrane Potential as Bioenergetic Response to Anoxia in Dinoroseobacter shibae Christian Kirchhoff and Heribert Cypionka* Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany Dinoroseobacter shibae DFL 12T is a metabolically versatile member of the world-wide abundant Roseobacter clade. As an epibiont of dinoflagellates D. shibae is subjected to rigorous changes in oxygen availability. It has been shown that it loses up to 90% of its intracellular ATP when exposed to anoxic conditions. Yet, D. shibae regenerates its ATP level quickly when oxygen becomes available again. In the present study we focused on the bioenergetic aspects of the quick recovery and hypothesized that the proton-motive force decreases during anoxia and gets restored upon re-aeration. Therefore, we analyzed 1pH and the membrane potential (19) during the oxic-anoxic transitions. To visualize changes of 19 we used fluorescence microscopy and the carbocyanine 0 dyes DiOC2 (3; 3,3 -Diethyloxacarbocyanine Iodide) and JC-10. In control experiments Edited by: the 19-decreasing effects of the chemiosmotic inhibitors CCCP (carbonyl cyanide Inês A. Cardoso Pereira, 0 0 Instituto de Tecnologia Química e m-chlorophenyl hydrazone), TCS (3,3 ,4 ,5-tetrachlorosalicylanilide) and gramicidin were Biológica (ITQB-NOVA), Portugal tested on D. shibae and Gram-negative and -positive control bacteria (Escherichia coli Reviewed by: and Micrococcus luteus). We found that 1pH is not affected by short-term anoxia and Pablo Ivan Nikel, does not contribute to the quick ATP regeneration in D.
    [Show full text]
  • The Exometabolome of Two Model Strains of the Roseobacter Group: a Marketplace of Microbial Metabolites
    ORIGINAL RESEARCH published: 12 October 2017 doi: 10.3389/fmicb.2017.01985 The Exometabolome of Two Model Strains of the Roseobacter Group: A Marketplace of Microbial Metabolites Gerrit Wienhausen, Beatriz E. Noriega-Ortega, Jutta Niggemann, Thorsten Dittmar and Meinhard Simon* Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany Recent studies applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed that the exometabolome of marine bacteria is composed of a surprisingly high molecular diversity. To shed more light on how this diversity is generated we examined the exometabolome of two model strains of the Roseobacter group, Phaeobacter inhibens and Dinoroseobacter shibae, grown on glutamate, glucose, acetate or succinate by FT-ICR-MS. We detected 2,767 and 3,354 molecular formulas in the exometabolome of each strain and 67 and 84 matched genome-predicted metabolites of P.inhibens and D. shibae, respectively. The annotated compounds include late precursors of biosynthetic pathways of vitamins B1, B2, B5, B6, B7, B12, amino acids, quorum sensing-related compounds, indole acetic acid and methyl-(indole-3-yl) acetic Edited by: acid. Several formulas were also found in phytoplankton blooms. To shed more light on Tilmann Harder, University of Bremen, Germany the effects of some of the precursors we supplemented two B1 prototrophic diatoms Reviewed by: with the detected precursor of vitamin B1 HET (4-methyl-5-(β-hydroxyethyl)thiazole) and Rebecca Case, HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine) and found that their growth was University of Alberta, Canada Torsten Thomas, stimulated. Our findings indicate that both strains and other bacteria excreting a similar University of New South Wales, wealth of metabolites may function as important helpers to auxotrophic and prototrophic Australia marine microbes by supplying growth factors and biosynthetic precursors.
    [Show full text]
  • A Dual-Species Co-Cultivation System to Study the Interactions Between Roseobacters and Dinoflagellates
    ORIGINAL RESEARCH ARTICLE published: 25 June 2014 doi: 10.3389/fmicb.2014.00311 A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates Hui Wang , Jürgen Tomasch , Michael Jarek and Irene Wagner-Döbler* Helmholtz-Centre for Infection Research, Braunschweig, Germany Edited by: Some microalgae in nature live in symbiosis with microorganisms that can enhance or Hongyue Dang, Xiamen University, inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the China great ecological importance of these interactions, very few defined laboratory systems Reviewed by: are available to study them in detail. Here we present a co-cultivation system consisting of David J. Scanlan, University of Warwick, UK the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic Hanna Maria Farnelid, University of alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon California Santa Cruz, USA source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, *Correspondence: growth dynamics reproducibly went from a mutualistic phase, where both algae and Irene Wagner-Döbler, bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The Helmholtz-Centre for Infection Research, Group Microbial data show a “Jekyll and Hyde” lifestyle that had been proposed but not previously Communication, Inhoffenstr. 7, demonstrated. We used RNAseq and microarray analysis to determine which genes of 38124 Braunschweig, Germany D. shibae are transcribed and differentially expressed in a light dependent way at an e-mail: irene.wagner-doebler@ early time-point of the co-culture when the bacterium grows very slowly. Enrichment helmholtz-hzi.de of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely.
    [Show full text]
  • Identification of Genetic Modules Mediating the Jekyll and Hyde
    ORIGINAL RESEARCH published: 13 November 2015 doi: 10.3389/fmicb.2015.01262 Identification of Genetic Modules Mediating the Jekyll and Hyde Interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum Hui Wang1†, Jürgen Tomasch1†, Victoria Michael2, Sabin Bhuju3, Michael Jarek3, Jörn Petersen2 and Irene Wagner-Döbler1* 1 Helmholtz-Centre for Infection Research, Microbial Communication, Braunschweig, Germany, 2 German Collection of Microorganisms and Cell Cultures, Microbial Ecology and Diversity Research, Braunschweig, Germany, 3 Helmholtz-Centre for Infection Research, Genome Analytics, Braunschweig, Germany The co-cultivation of the alphaproteobacterium Dinoroseobacter shibae with the Edited by: dinoflagellate Prorocentrum minimum is characterized by a mutualistic phase followed Rex Malmstrom, by a pathogenic phase in which the bacterium kills aging algae. Thus it resembles the DOE Joint Genome Institute, USA “Jekyll-and-Hyde” interaction that has been proposed for other algae and Roseobacter. Reviewed by: Here, we identified key genetic components of this interaction. Analysis of the Rebecca Case, University of Alberta, Canada transcriptome of D. shibae in co-culture with P. minimum revealed growth phase Shady A. Amin, dependent changes in the expression of quorum sensing, the CtrA phosphorelay, and University of Washington, USA flagella biosynthesis genes. Deletion of the histidine kinase gene cckA which is part of *Correspondence: the CtrA phosphorelay or the flagella genes fliC or flgK resulted in complete lack of Irene Wagner-Döbler irene.wagner-doebler@helmholtz- growth stimulation of P. minimum in co-culture with the D. shibae mutants. By contrast, hzi.de pathogenicity was entirely dependent on one of the extrachromosomal elements of †These authors have contributed D.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Incorporating a Molecular Antenna in Diatom Microalgae Cells Enhances
    www.nature.com/scientificreports OPEN Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis Gabriella Leone1,2, Gabriel De la Cruz Valbuena3, Stefania Roberta Cicco4, Danilo Vona1, Emiliano Altamura1, Roberta Ragni1, Egle Molotokaite2, Michela Cecchin5, Stefano Cazzaniga5, Matteo Ballottari5, Cosimo D’Andrea2,3, Guglielmo Lanzani2,3* & Gianluca Maria Farinola1* Diatom microalgae have great industrial potential as next-generation sources of biomaterials and biofuels. Efective scale-up of their production can be pursued by enhancing the efciency of their photosynthetic process in a way that increases the solar-to-biomass conversion yield. A proof-of- concept demonstration is given of the possibility of enhancing the light absorption of algae and of increasing their efciency in photosynthesis by in vivo incorporation of an organic dye which acts as an antenna and enhances cells’ growth and biomass production without resorting to genetic modifcation. A molecular dye (Cy5) is incorporated in Thalassiosira weissfogii diatom cells by simply adding it to the culture medium and thus flling the orange gap that limits their absorption of sunlight. Cy5 enhances diatoms’ photosynthetic oxygen production and cell density by 49% and 40%, respectively. Cy5 incorporation also increases by 12% the algal lipid free fatty acid (FFA) production versus the pristine cell culture, thus representing a suitable way to enhance biofuel generation from algal species. Time-resolved spectroscopy reveals Förster Resonance Energy Transfer (FRET) from Cy5 to algal chlorophyll. The present approach lays the basis for non-genetic tailoring of diatoms’ spectral response to light harvesting, opening up new ways for their industrial valorization. Drastic changes in climate and reduction in the availability of raw chemical materials are drawing academic and industrial research, as a matter of considerable urgency, towards photosynthetic organisms as living factories for the large-scale production of fuels and active chemical products.
    [Show full text]