DIGITAL ARTS ANIMATION Ta

Total Page:16

File Type:pdf, Size:1020Kb

DIGITAL ARTS ANIMATION Ta N N O O I I TION A at at S ANIM T L ARTS ANIM L ARTS L AR L AR A BACHELOR OF FINE ARTS IN DIGITAL ARTS ANIMATION ta ta I I The Digital Arts Animation major at the Art Academy Digital Arts Animation Majors will alternate G G invites students to study the compositional elements that between working with others and developing IGIT I I are associated with time-based imagery, understand the personal productions. DAA Majors are expected D language of moving images, and explore how these specific to complete personal bodies of work in which D D principles are manifested in 2D, 3D, and 4D compositions. they establish their voice and prepare portfolios Digital Arts Animation students choose from a variety of that demonstrate not only their technical skills but courses that allow them to focus on or broadly experiment also their creative vision. with narrative or more graphical aspects of motion media. S IN S IN All classes are designed with the idea that application Education Digital Arts Animation Majors are T of contemporary digital media is meant to fluidly evolve prepared to enter an ever-changing digital and to use creative methods in conjunction to create new landscape in which software changes and imagery and more complex illusions. merges. This degree track focuses on fluid motion between digital practices and the strategies Digital Arts Animation Curriculum to acquire new skills and find resources, while Educational Objectives | Digital Arts Animation Major understanding that the digital world is in the process of perpetual updating. Creativity Digital Arts Animation Majors engage FINE ARTS IN FINE ARTS FINE AR FINE AR in a diverse range of processes that produce History Digital Arts Animation Majors are F creative and relevant results. A variety of creative prepared to understand the historical context of processes are introduced from different animation their craft through research and exposition. The OF OF techniques to creative methods to explore the program focuses on both the historical groundings concept of time. DAA majors learn to create of animation practice as well as contemporary R R narratives as well as experiences. global digital issues. O O Curiosity Digital Arts Animation Majors are Community Community is a key component of encouraged to explore new forms of animation, the Digital Arts Animation major. DAA students inventing imagery that may be completely will often be expected to collaborate with their unique. Through research and experimentation, peers. At times, Animation and Digital Arts can CHEL CHEL CHEL they will seek the possibilities that these forms be tedious monumental tasks that can only be A A A of expressions can offer. Students are also completed with a crew. Students are prepared expected to investigate the positions that pique to step into different roles and cooperate to build B OR O B their interest in the grand machinery that is the collective projects. Animation Industry. Individuality Even though Animation is often 30 considered to be more of a collaborative effort, Artwork: Zuleyma Banderas Educational Outcomes | Digital Arts Animation Major Introductory to Intermediate Intermediate to Advanced • Learn and apply introductory skills in a variety of time- • Expand technical skills in 2D or 3D animation through based art practices. completion of projects. • Develop understanding of time composition and its • Explore resources available to research and acquire new relationship to 2D composition. technical and conceptual knowledge in preparation for • Acquire technical knowledge of stop motion and key self-directed work. frame animation. • Develop personal visual style of animation. • Gain working knowledge of Adobe software that deal • Develop and complete animation sequences. with time (Premiere, Animate). • Acquire understanding of the contemporary animation • Acquire knowledge of the history and contemporary landscape. development of the moving image in the context of fine • Acquire skills in sound recording in studio and field arts. recording. • Gain working knowledge of the vocabulary of film • Be able to deliver relevant narratives to a diverse language, types of shots, transitions, and editing. audience about work that will validate, defend, or • Apply basic principles of character staging, shot convince the audience of the best solution. progression, camera angles, lighting tones, & camera • Develop creative relationship between video and sound. moves with in-class exercises & assignments. • Acquire knowledge of sound editing in multiple software. • Create a series of hand-drawn storyboards demonstrating knowledge of sequential narration with • Gain working knowledge of synchronism between sound accurate perspective and placement of characters. and images. • Practice visual methods of expressing character • Gain working knowledge of the technologies involved in attitudes and acting that relate to storytelling. sound display. • Acquire understanding of basic narratology principles • Acquire knowledge in key-frame based animation and and explore different types of narrative structures. motion graphics using After Effects. • Learn technical knowledge of the Adobe Animate • Increase Video Editing skills, using Premiere Pro interface. extensively. • Acquire understanding of keyframe animation. • Develop sophistication in time-based composition. • Gain working knowledge of the 12 Principles of • Practice different ways Photoshop, Premiere Pro, Animation. Audition, and After Effects can be used in collaboration to create a final time-based composition. • Develop drawing skills in relation to animation. • Learn to combine animated typography, sound, and • Acquire knowledge of tasks and stages of animation and video in dynamic compositions. its industry. • Complete self-directed research and/or collect source • Gain working knowledge of the interface of 3D Animation materials to inform their projects. software such as Blender or Unity. • Draw on their technical knowledge to expand their visual • Gain understanding of UV Maps in order to create language. textures for 3D models. • Acclimate to unstructured studio time and increase self- • Develop understanding of Orthographic maps. discipline and self-motivation. • Acquire working knowledge of how to render and create • Create original work based on a personal vision composite images. statement. • Introduction to Basic Animation in 3D modeling software. • Increase student’s ability to develop work with awareness of the contemporary landscape of animation and related media. • Complete a thesis paper and produce work that is the basis for a visual thesis exhibition, which provides a capstone experience. • Give a public, professional presentation. 31 BACHELOR OF FINE ARTS IN DIGITAL ARTS ANIMATION DRxxx Drawing Elective 3 Natural Science Elective 3 FY101 Communication 3 Social Science Elective 3 FY102 Ideation 3 Required Humanities Elective 3 FY105 Digital Literacy 3 ARTS LIBERAL Liberal Arts Electives 9 FYE: FYE: STUDIO ARTS FY106 Discovery and Voice 3 LA481 Senior Thesis 3 Global Art Histories (replaces AH104 3 AH110) SA482 Senior Seminar 3 Issues and Ideas in Modern and AH105 3 Contemporary Art History SA491 Senior Pathway Studio 1 6 HU101 Artist as Writer Workshop 3 FYE: FYE: LIBERAL ARTS HU102 Artist as Reader Workshop 3 SA492 Senior Pathway Studio 2 6 SENIOR YEAR EXPERIENCE DA213 Art and the Moving Image 3 TOTAL CREDIT HOURS DA214 Storyboarding and Sequencing 3 Major Required Required Courses for Contemporary Vision and Voice DA314 3 in Animation and Motion Media CA201 Introduction to 2D Animation 3 CA202 Introduction to 3D Animation 3 Motion Graphics and Special DA311 3 Effects DA312 Animation for Narratives 3 DIGITAL ARTS ANIMATION MAJOR Chose 2 of the Following: DA313 Sound and the Moving Image 3 Going Big: Professionalism PC201 3 Workshop Professional Practice PCxxx Coursework (Choose from 3 approved options) MFA PROFESSIONAL PRACTICEPROFESSIONAL Loraine Wible, Head of Digital Arts Animation Major STUDIO ELECTIVES 27 AH2xx Any 200-level Art History Elective 3 AH3xx Any 300-level Art History Elective 3 ART HISTORY ART HISTORY AH211 Introduction to Visual Culture HU201 Aesthetics 3 Choose One HU210 Introduction to Philosophy CRITICAL THINKINGCRITICAL 32 DA312 Narrative Animation in 2 and 3 Required Courses, Digital Arts Digital Arts Animation Majors Dimensions (3) Animation Major: Choose Two of the following This course is an advanced 2D/3D Courses: animation course furthering technical DA213 Art and the Moving Image (3) skills. In Narrative Animation in 2 and 3 This course is an introduction to the DA211 Introduction to 2D Animation (3) Dimensions, students create complex basic elements of time composition. Students enrolled in Introduction and ambitious projects and gain career- Students enrolled in Art and the to 2D Animation learn the process specific competencies in both 2D and Moving Image will explore concepts of sequential storytelling, animated 3D animation technologies. Students such as persistence of vision, time sequences, and motion graphics. will learn the structures necessary to cycles, speed, rhythm, and the Focusing on traditionally analog forms create complete animation work, as well principles of editing. Students will of animating, students learn current as acquire proficiency in contemporary make different types of time-based industry practices of production practices essential to animation visual compositions and explore a workflow pipeline including design, industries. (Prerequisite: DA213) variety of methods,
Recommended publications
  • Blender Instructions a Summary
    BLENDER INSTRUCTIONS A SUMMARY Attention all Mac users The first step for all Mac users who don’t have a three button mouse and/or a thumb wheel on the mouse is: 1.! Go under Edit menu 2.! Choose Preferences 3.! Click the Input tab 4.! Make sure there is a tick in the check boxes for “Emulate 3 Button Mouse” and “Continuous Grab”. 5.! Click the “Save As Default” button. This will allow you to navigate 3D space and move objects with a trackpad or one-mouse button and the keyboard. Also, if you prefer (but not critical as you do have the View menu to perform the same functions), you can emulate the numpad (the extra numbers on the right of extended keyboard devices). It means the numbers across the top of the standard keyboard will function the same way as the numpad. 1.! Go under Edit menu 2.! Choose Preferences 3. Click the Input tab 4.! Make sure there is a tick in the check box for “Emulate Numpad”. 5.! Click the “Save As Default” button. BLENDER BASIC SHORTCUT KEYS OBJECT MODE SHORTCUT KEYS EDIT MODE SHORTCUT KEYS The Interface The interface of Blender (version 2.8 and higher), is comprised of: 1. The Viewport This is the 3D scene showing you a default 3D object called a cube and a large mesh-like grid called the plane for helping you to visualize the X, Y and Z directions in space. And to save time, in Blender 2.8, the camera (left) and light (right in the distance) has been added to the viewport as default.
    [Show full text]
  • Introduction Infographics 3D Computer Graphics
    Planetary Science Multimedia Animated Infographics for Scientific Education and Public Outreach INTRODUCTION INFOGRAPHICS 3D COMPUTER GRAPHICS Visual and graphic representation of scientific knowledge is one of the most effective ways to present The production of infographics are made by using software creation and manipulation of vector The 3D computer graphics are modeled in CAD software like Blender, 3DSMax and Bryce and then complex scientific information in a clear and fast way. Furthermore, the use of animated infographics, graphics, such as Adobe Illustrator, CorelDraw and Inkscape. These programs generate SVG files to be rendered with plugins like Vray, Maxwell and Flamingo for a photorealistic finish. Terrain models are video and computerized graphics becomes a vital tool for education in Planetary Science. Using viewed in the multimedia. taken directly from DTM (Digital Terrain Models) data available of Solar System objects in various infographics resources arouse the interest of new generations of scientists, engineers and general official sources as NASA, ESA, JAXA, USGS, Google Mars and Google Moon. The DTM can also be raised public, and if it visually represents the concepts and data with high scientific rigor, outreach of from topographic maps available online from the same sources, using GIS tools like ArcScene, ArcMap infographics resources multiplies exponentially and Planetary Science will be broadcast with a precise and Global Mapper. conceptualization and interest generated and it will benefit immensely the ability to stimulate the formation of new scientists, engineers and researchers. This multimedia work mixes animated infographics, 3D computer graphics and video with vfx, with the goal of making an introduction to the Planetary Science and its basic concepts.
    [Show full text]
  • Critical Review of Open Source Tools for 3D Animation
    IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) Critical Review of Open Source Tools for 3D Animation Shilpa Sharma1, Navjot Singh Kohli2 1PG Department of Computer Science and IT, 2Department of Bollywood Department 1Lyallpur Khalsa College, Jalandhar, India, 2 Senior Video Editor at Punjab Kesari, Jalandhar, India ABSTRACT- the most popular and powerful open source is 3d Blender is a 3D computer graphics software program for and animation tools. blender is not a free software its a developing animated movies, visual effects, 3D games, and professional tool software used in animated shorts, tv adds software It’s a very easy and simple software you can use. It's show, and movies, as well as in production for films like also easy to download. Blender is an open source program, spiderman, beginning blender covers the latest blender 2.5 that's free software anybody can use it. Its offers with many release in depth. we also suggest to improve and possible features included in 3D modeling, texturing, rigging, skinning, additions to better the process. animation is an effective way of smoke simulation, animation, and rendering. Camera videos more suitable for the students. For e.g. litmus augmenting the learning of lab experiments. 3d animation is paper changing color, a video would be more convincing not only continues to have the advantages offered by 2d, like instead of animated clip, On the other hand, camera video is interactivity but also advertisement are new dimension of not adequate in certain work e.g. like separating hydrogen from vision probability.
    [Show full text]
  • Modifing Thingiverse Model in Blender
    Modifing Thingiverse Model In Blender Godard usually approbating proportionately or lixiviate cooingly when artier Wyn niello lastingly and forwardly. Euclidean Raoul still frivolling: antiphonic and indoor Ansell mildew quite fatly but redipped her exotoxin eligibly. Exhilarating and uncarted Manuel often discomforts some Roosevelt intimately or twaddles parabolically. Why not built into inventor using thingiverse blender sculpt the model window Logo simple metal, blender to thingiverse all your scene of the combined and. Your blender is in blender to empower the! This model then merging some models with blender also the thingiverse me who as! Cam can also fits a thingiverse in your model which are interchangeably used software? Stl files software is thingiverse blender resize designs directly from the toolbar from scratch to mark parts of the optics will be to! Another method for linux blender, in thingiverse and reusable components may. Svg export new geometrics works, after hours and drop or another one of hobbyist projects its huge user community gallery to the day? You blender model is thingiverse all models working choice for modeling meaning you can be. However in blender by using the product. Open in blender resize it original shape modeling software for a problem indeed delete this software for a copy. Stl file blender and thingiverse all the stl files using a screenshot? Another one modifing thingiverse model in blender is likely that. If we are in thingiverse object you to modeling are. Stl for not choose another source. The model in handy later. The correct dimensions then press esc to animation and exporting into many brands and exported file with the.
    [Show full text]
  • Digital (R)Evolution: Open-Source Softwares for Orthodontics
    applied sciences Article Digital (R)Evolution: Open-Source Softwares for Orthodontics Fabio Federici Canova 1,* , Giorgio Oliva 2, Matteo Beretta 1 and Domenico Dalessandri 2 1 Department of Medical and Surgical Specialties, Postgraduate Orthodontic School, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; [email protected] 2 Department of Medical and Surgical Specialties, School of Dentistry, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; [email protected] (G.O.); [email protected] (D.D.) * Correspondence: [email protected] Abstract: Among the innovations that have changed modern orthodontics, the introduction of new digital technologies in daily clinical practice has had a major impact, in particular the use of 3D models of dental arches. The possibility for direct 3D capture of arches using intraoral scanners has brought many clinicians closer to the digital world. The digital revolution of orthodontic practice requires both hardware components and dedicated software for the analysis of STL models and all other files generated by the digital workflow. However, there are some negative aspects, including the need for the clinician and technicians to learn how to use new software. In this context, we can distinguish two main software types: dedicated software (i.e., developed by orthodontic companies) and open-source software. Dedicated software tend to have a much more user-friendly interface, and be easier to use and more intuitive, due to being designed and developed for a non-expert user, but very high rental or purchase costs are an issue. Therefore, younger clinicians with more extensive digital skills have begun to look with increasing interest at open-source software.
    [Show full text]
  • Blender Hotkeys In-Depth Reference Relevant to Blender 2.36 - Compiled from Blender Online Guides fileformat Is As Indicated in the Displaybuttons
    Blender HotKeys In-depth Reference Relevant to Blender 2.36 - Compiled from Blender Online Guides fileformat is as indicated in the DisplayButtons. The window Window HotKeys becomes a File Select Window. Certain window managers also use the following hotkeys. CTRL-F3 (ALT-CTRL-F3 on MacOSX). Saves a screendump So ALT-CTRL can be substituted for CTRL to perform the of the active window. The fileformat is as indicated in the functions described below if a conflict arises. DisplayButtons. The window becomes a FileWindow. CTRL-LEFTARROW. Go to the previous Screen. SHIFT-CTRL-F3. Saves a screendump of the whole Blender screen. The fileformat is as indicated in the DisplayButtons. The CTRL-RIGHTARROW. Go to the next Screen. window becomes a FileWindow. CTRL-UPARROW or CTRL-DOWNARROW. Maximise the F4. Displays the Logic Context (if a ButtonsWindow is window or return to the previous window display size. available). SHIFT-F4. Change the window to a Data View F5. Displays the Shading Context (if a Buttons Window is available), Light, Material or World Sub-contextes depends on SHIFT-F5. Change the window to a 3D Window active object. SHIFT-F6. Change the window to an IPO Window F6. Displays the Shading Context and Texture Sub-context (if a SHIFT-F7. Change the window to a Buttons Window ButtonsWindow is available). SHIFT-F8. Change the window to a Sequence Window F7. Displays the Object Context (if a ButtonsWindow is available). SHIFT-F9. Change the window to an Outliner Window F8. Displays the Shading Context and World Sub-context (if a SHIFT-F10.
    [Show full text]
  • Xinxinli Black Edges
    Video Editing with Open Source Tools Simon Wiles Center for Interdisciplinary Digital Research @ Stanford Cross !latform and Free Open Source Software ● $i%re vs' gratis ( 自由 ) 免費 * ● No Vendor $oc,-In ● No OS/!latform Lock In ● Open Formats ● Easier Collaboration Cross !latform and Free Open Source ● OpenShot - https.))www'openshot'org) ● /DE+$i&e - https.)),denli&e'org) ● 0VIdemu1 - http.))avidemu1'sourceforge'net) ● ""2!eg – https.))3mpeg'org) ● 4lender – https.))www'%lender'org) ● Natron – https.))natrongithu%'githu%'io) ● O4S Studio – https.))o%sproject'com/ Cross !latform but not Free Open Source ● DaVinci Resol&e https.))www'%lac,magicdesign'com)products)davinciresol&e – Free version and “Studio” version (mainly about collaborative features); $299 ● $ightWorks https.))www'lwks'com/ – Free version (requires registration) and “Pro” version ( dvanced features, notably U#$ 4k e'(ort); monthly/yearly subscri(tion ($25/$175), or permanent license ($438) ● WeVideo https.))www'wevideo'com/ – 0eb-based video editor Auxiliary So#ware ● VLC https.))www'videolan.org) – “ free and o(en source cross1(latform multimedia player and frame2or& that (lays most multimedia files as well as D3$s, Audio C$s, V4$s! and various streaming protocols5” ● Hand%ra,e https.))hand%ra,e'fr) – “ [free and open source cross1(latform] tool for converting video from nearly any format to a selection of modern! widely su((orted codecs5” 7eneral Notes ● Non-Linear Video Editing ● Hardware – 4P"*GP" horse(o2er, but also screen real-estate! a mouse! etc.! ● Video "ormats and !ro1y Editing – :ur drones are out(utting a Quic&Time M:3 wra((er, containing one video stream> ● #.264, 29.97 f(s (@<SC) @ 2704',+20 (2.7k, 4.1megapi'els) ~45 Mb/s, ● Editing ta,es time8 – 0atching footage, storyboarding etc.
    [Show full text]
  • 3D Scientific Visualization with Blender Brian R
    3D Scientific Visualization with Blender Brian R. Kent, Ph.D. Scientist, National Radio Astronomy Observatory www.cv.nrao.edu/~bkent/blender Twitter and Instagram: @VizAstro Watch the live broadcast of this presentation, courtesy of NCSA, at: https://youtu.be/8FqGNdvEVWo?t=539 Interesting in learning more? Book and tutorials available at: http://www.cv.nrao.edu/~bkent/blender/ https://www.youtube.com/VisualizeAstronomy Twitter and Instagram: @VizAstro Brian R. Kent, Ph.D. Scientist, National Radio Astronomy Observatory Overview - 3D Scientific Visualization with Blender • Science domain and data of astronomy • What and why we need to visualize data • All about the visualization tool Blender • Examples • Intro to using the interface Dr. Brian R. Kent 3D Visualization NRAO Radio Telescopes Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Astrophysical Phenomena Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization What do we do in observational astronomy? Caltech/NRAO/NASA/STScI Remote sensing and planetary exploration Dr. Brian R. Kent 3D Visualization Remote Sensing ● Imaging from the ground or space of phenomena that we can’t physically reach ● The entire physical Universe is our laboratory ● Spectroscopy ○ Dynamics and kinematics, chemistry ● Imaging ○ Earth looking out, and from orbit looking at planets ● Time-series ○ Asteroid identification, light-curves for planet finding, and pulsar timing for general relativity Dr. Brian R. Kent 3D Visualization Astrophysical Simulations ● N-body simulations ● Smoothed Particle Hydrodynamics ● Numerical Relativity ● Models of… ○ Interacting Binary Stars ○ Active Galactic Nuclei Jets ○ Black Holes ○ Interacting Galaxies Data from Matt Wood, Texas A&M University-Commerce Dr.
    [Show full text]
  • Houdini for Astrophysical Visualization
    DRAFT VERSION JANUARY 10, 2017 Preprint typeset using LATEX style emulateapj v. 5/2/11 HOUDINI FOR ASTROPHYSICAL VISUALIZATION J.P. NAIMAN1 ,KALINA BORKIEWICZ2 , A.J. CHRISTENSEN2 Draft version January 10, 2017 ABSTRACT The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large datasets. Here we dis- cuss some newly developed tools to import and manipulate astrophysical data into the three dimensional visual effects software, Houdini. This software is widely used by visual effects artists, but a recently implemented Python API now allows astronomers to more easily use Houdini as a visualization tool. This paper includes a description of features, work flow, and various example visualizations. The project website, www.ytini.com, contains Houdini tutorials and links to the Python script Bitbucket repository aimed at a scientific audience to simplify the process of importing and rendering astrophysical data. Subject headings: methods: numerical, methods: data analysis 1. INTRODUCTION Astronomers have long used visualizations of their observed and simulated data to stimulate the public’s interest in science. Recent inroads which utilize three dimensional modeling and game development software make the possibility of outreach materials generated by a myriad of individual scientists, rather than a few graphics studios, an exciting new avenue to be explored (Kent 2015; Taylor 2015; Naiman 2016). As technological advancements in graphics and gaming progress, the scientist is presented with innovative methods to further develop their own public outreach (Vogt & Shingles 2013; Steffen et al. 2014; Vogt et al. 2014; Brown et al.
    [Show full text]
  • Animation Boy Scouts of America Merit Badge Series
    ANIMATION BOY SCOUTS OF AMERICA MERIT BADGE SERIES ANIM ATION “Enhancing our youths’ competitive edge through merit badges” Requirements 1. General knowledge. Do the following: a. In your own words, describe to your counselor what animation is. b. Discuss with your counselor a brief history of animation. 2. Principles of animation. Choose five of the following 12 principles of animation, and discuss how each one makes an animation appear more believable: squash and stretch, anticipation, staging, straight-ahead action and pose to pose, follow through and overlapping action, slow in and slow out, arcs, secondary action, timing, exaggeration, solid drawing, appeal. 3. Projects. With your counselor’s approval, choose two animation techniques and do the following for each: a. Plan your animation using thumbnail sketches and/or layout drawings. b. Create the animation. c. Share your animations with your counselor. Explain how you created each one, and discuss any improvements that could be made. 4. Animation in our world. Do the following: a. Tour an animation studio or a business where animation is used, either in person, via video, or via the Internet. Share what you have learned with your counselor. b. Discuss with your counselor how animation might be used in the future to make your life more enjoyable and productive. 5. Careers. Learn about three career opportunities in animation. Pick one and find out about the education, training, and experience required for this profession. Discuss your findings with your counselor. Explain why this profession might interest you. ANIMATION 9 Animation Resources. Goldberg, Eric. Character Animation Animation Crash Course! Silman-James Press, 2008.
    [Show full text]
  • 1. Why POCS.Key
    Symptoms of Complexity Prof. George Candea School of Computer & Communication Sciences Building Bridges A RTlClES A COMPUTER SCIENCE PERSPECTIVE OF BRIDGE DESIGN What kinds of lessonsdoes a classical engineering discipline like bridge design have for an emerging engineering discipline like computer systems Observation design?Case-study editors Alfred Spector and David Gifford consider the • insight and experienceof bridge designer Gerard Fox to find out how strong the parallels are. • bridges are normally on-time, on-budget, and don’t fall ALFRED SPECTORand DAVID GIFFORD • software projects rarely ship on-time, are often over- AS Gerry, let’s begin with an overview of THE DESIGN PROCESS bridges. AS What is the procedure for designing and con- GF In the United States, most highway bridges are budget, and rarely work exactly as specified structing a bridge? mandated by a government agency. The great major- GF It breaks down into three phases: the prelimi- ity are small bridges (with spans of less than 150 nay design phase, the main design phase, and the feet) and are part of the public highway system. construction phase. For larger bridges, several alter- There are fewer large bridges, having spans of 600 native designs are usually considered during the Blueprints for bridges must be approved... feet or more, that carry roads over bodies of water, preliminary design phase, whereas simple calcula- • gorges, or other large obstacles. There are also a tions or experience usually suffices in determining small number of superlarge bridges with spans ap- the appropriate design for small bridges. There are a proaching a mile, like the Verrazzano Narrows lot more factors to take into account with a large Bridge in New Yor:k.
    [Show full text]
  • 2 – Using Makehuman Characters a Series on Unity 3D Introductory Tutorials
    Unity 3D easy steps Tutorial series for beginners http://portal.babelx3d.net 2 – Using MakeHuman Characters A series on Unity 3D introductory tutorials. In Unity’s “Standard Assets” resource, once installed, we have one character, ethan, already configured to be used in scenes: it’s managed as a 3rd Person Controller prefab with the standard gesture animations (Walk, run, jump, crouch, idle). We can get other characters/avatars in public 3D repositories like Unity’s Asset Store (lots of free stuff in there) or by making them ourselves in programs like Makehuman. Although in this tutorial we are referring to MakeHuman, an easy and intuitive software that can export characters in .fbx, properly configured with a “Game Engine Rig” compatible with Unity3D, the procedures referred (after point 1) are valid to import similarly configured characters made by other reference software (Blender, 3DS Max, Daz Studio, Mixamo, …) Figure 1 – An imported MakeHuman character performing in a WebGL basic scene created by Unity3D Install Makehuman: download from http://www.makehuman.org/ Some terminology: • Character designates a dynamic entity that performs in the scene, can be a humanoid, non-humanoid or other. • Avatar or Player is a character that represents the user in the scene. • Third Person View - when the avatar is visible in the scene. 1. Create a Character in Makehuman The creation process is intuitive and we quickly get a character, named here avatarMH1, as we see in Figure 2. If you need some hints on designing the humanoid look at tutorial: MakeHuman 1.1 -- A Completely Free 3D Character Creator 1 Unity 3D easy steps Tutorial series for beginners http://portal.babelx3d.net Figure 2 – Caracter creation in Makehuman When the character shape, the modeling, is finished: 1.
    [Show full text]