Responses to Chemical Cross-Talk Between the Mycobacterium

Total Page:16

File Type:pdf, Size:1020Kb

Responses to Chemical Cross-Talk Between the Mycobacterium www.nature.com/scientificreports OPEN Responses to chemical cross‑talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus Laxmi Dhungel1, Lindsey Burcham1, Joo Youn Park1, Harshini Devi Sampathkumar1, Albert Cudjoe2, Keun Seok Seo1 & Heather Jordan1* Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens’ colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co‑colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not afect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and signifcant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecifc interactions that may play a role in regulation of responses such as efects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention. Buruli ulcer (BU) disease is a necrotizing skin disease whose etiological agent is Mycobacterium ulcerans (MU). Te major virulence factor of MU is mycolactone, a cytotoxic macrocyclic lipid encoded by a giant plasmid pMUM001 that was acquired during emergence from an M. marinum progenitor1. Mycolactone leads to detach- ment and death of fbroblasts, epithelial cells, endothelial cells and karatinocytes, following exposure of 24–48 h, and leads to local and systemic immunomodulation2. Mycolactone’s mechanism on host cells has been shown to profoundly inhibit several host cytokines and chemokines that are dependent on Sec61 mediated translocation such as IL-17, TNFα, IL-6, chemokines IL-8 and MIP2, and adhesion molecules such as L-selectin. But other cytokines such as IL-1α, chemokines CCCL1, CXCL5 and adhesion molecules such as P-selectin, E-selectin, intracellular adhesion molecule (ICAM1) and lymphocyte function-associated antigen 1 are less afected3,4. Also, Interleukin-1β (IL-1β), a Sec-independent cytokine released through the caspase activated pathway has been shown to be less inhibited by mycolactone, suggesting selective inhibition of infammatory cytokines in BU disease3,5,6. In fact, a recent study showed that mycolactone induced IL-1β production by murine and human macrophages, possibly through mycolactone-mediated membrane disturbance and the production of reactive oxygen species that trigger NLRP3/1 infammasome activation, leading to the release of active IL-1β7. And, mycolactone does not appear to directly afect neutrophils in BU disease as its toxicity toward neutrophils is observed only in high doses, and absence of neutrophils in BU wounds is mainly attributed to poor neutrophil chemotaxis toward MU3,8. 1Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS 39762, USA. 2Georgia State University, Atlanta, GA, USA. *email: [email protected] Scientifc Reports | (2021) 11:11746 | https://doi.org/10.1038/s41598-021-89177-5 1 Vol.:(0123456789) www.nature.com/scientificreports/ Figure 1. (A) Dose efect of mycolactone on S. aureus growth measured by OD600 for up to 16 h. (B) Comparison of OD600 of S. aureus incubated alone, or with mycolactone or EtOH at 3H, 6H, and 24H. Staphylococcus aureus, S. epidermidis and Pseudomonas aeruginosa have been isolated from the infected lesions of BU patients9–12. However, disease pathology normally associated with these pathogens, such as pain, pus, or redness is strikingly absent in these ulcers, especially prior to MU antibiotic treatment 9,10,13. Despite the lack of pathology, co-colonization by these pathogens may promote delayed wound healing, especially afer the initiation of MU antibiotic therapy. Staphylococcus aureus is a primary cause of skin and sof tissue infections, prosthetic-joint infections and infective endocarditis 14–17, but may also be human normal fora, particularly resid- ing within anterior nares 18. S. aureus expresses several factors required for colonization (adhesins) and invasion (coagulase, staphylokinase)19, lysis (hemolysins), immune evasion (leukotoxins), and increased pathogenicity (enterotoxins and TSST1), which are regulated by the SaeRS (S. aureus exoprotein expression) two component system (among others)20–22; but also by the accessory gene regulator system (Agr), that regulates virulence through quorum sensing mechanisms 23,24. What is less clear, then, is whether the absence of pus and other pathology in a co-infected wound from a BU patient is due to decreased virulence of S. aureus or immune suppression caused by mycolactone. S. aureus skin infection is typically characterized by abscess formation mediated by neutrophils, where the absence of pro- infammatory cytokine IL-1β has been associated with increased lesion size in murine skin infections4,25. Also, S. aureus colonizing BU wounds contains virulence genes such as hla (hemolysin), sak (staphylokinase), and luk (several leukocidins including lukD, lukE, lukF, lukS, and PVL) with a potential to cause serious and invasive infections. However, absence of any pus or invasive infection in BU patients colonized with S. aureus suggests attenuation of S. aureus virulence in BU disease and a potential role of mycolactone in driving this attenuation 9,26. Te macrocyclic structure of mycolactone is similar to quorum sensing (QS) compounds in other bacteria. Studies have shown that some QS molecules such as 3-oxo-C12-Homoserine lactone produced by P. aeruginosa can inhibit QS systems of other bacteria, such as inhibition of S. aureus sarA and agr expression27. Auto-inducing peptides produced by S. epidermidis and S. schleiferi can also inhibit expression of Agr regulated virulence genes in S. aureus20,28. Te inability of isolated pathogens such as S. aureus to cause disease in BU wounds is intriguing and suggest mechanisms of MU to attenuate the virulence of those pathogens during infection, contributing to niche competition, and predominance of MU in the wound. On the other hand, co-colonization in a MU wound could allow S. aureus nutrient acquisition and a means of dispersal at a lowered energy expense. Terefore, the purpose of this study was to understand the efect of mycolactone on S. aureus growth, expression of virulence factors and hemolysis. Results S. aureus growth is not inhibited by mycolactone. Staphylococcus aureus was incubated with myco- lactone (concentration 0 ng–10 µg) over time to determine whether there was any efect by mycolactone on S. aureus growth. Based on optical density (OD600nm), low to moderate mycolactone concentrations (1 ng–1 µg) had no efect on S. aureus growth for up to 16H, though 10 µg mycolactone had some efect on S. aureus growth afer 7H (Fig. 1A). We also measured corresponding S. aureus growth in association with our gene expression experiments across timepoints. Tere was no statistical diference in growth between S. aureus containing 0, 50, 100 and 300 ng/mL mycolactone and control at 3H, 6H and 24H timepoints (Fig. 1B). Mycolactone reduces S. aureus hemolytic activity. Staphylococcus aureus hemolytic activity was sig- nifcantly decreased for S. aureus incubated with mycolactone (concentration 50, 100 and 300 ng) compared to S. aureus incubated with the mycolactone vehicle control (EtOH) at 3H. While hemolysis was decreased for S. aureus incubated with all concentrations at 6H compared to controls, this decrease was not statistically signif- cant. At 24H, hemolysis was only signifcantly reduced for S. aureus incubated with 300 ng mycolactone (Fig. 2). Mycolactone leads to modulation of S. aureus global regulator gene expression. Te efect of mycolactone on S. aureus agrA, saeR and hla virulence genes was determined by RT-qPCR. Te results showed that agrA was not signifcantly modulated at 3H (Fig. 3A) but was signifcantly downregulated for S. aureus incubated with mycolactone (300 ng at 6H (p = 0.043, Fig. 3B). However, agrA returned to control levels at 24H Scientifc Reports | (2021) 11:11746 | https://doi.org/10.1038/s41598-021-89177-5 2 Vol:.(1234567890) www.nature.com/scientificreports/ Figure 2. Mycolactone co-Incubation reduced S. aureus hemolysis over time. Graph showing OD500 of red blood cells incubated with water (positive control), S. aureus alone, S. aureus plus 50 ng mycolactone, S. aureus plus 100 ng mycolactone, or S. aureus plus 300 ng mycolactone. Signifcance was determined as < 0.05. (a–c), and (d,e) denotes signifcantly diferent
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Role of Vegetation-Associated Protease Activity in Valve Destruction in Human Infective Endocarditis
    Role of Vegetation-Associated Protease Activity in Valve Destruction in Human Infective Endocarditis Ghada Al-Salih1, Nawwar Al-Attar2,3, Sandrine Delbosc1, Liliane Louedec1, Elisabeth Corvazier1, Ste´phane Loyau1, Jean-Baptiste Michel1,3, Dominique Pidard1,4, Xavier Duval5, Olivier Meilhac1,3,6* 1 INSERM U698, Paris, France, 2 Cardiovascular Surgery Department, Bichat Hospital, AP-HP, Paris, France, 3 University Paris Diderot, Sorbonne Paris Cite´, Paris, France, 4 Institut National des Sciences du Vivant, Centre National de la Recherche Scientifique, Paris, France, 5 INSERM CIC 007, Paris, France, 6 Bichat Stroke Centre, AP-HP, Paris, France Abstract Aims: Infective endocarditis (IE) is characterized by septic thrombi (vegetations) attached on heart valves, consisting of microbial colonization of the valvular endocardium, that may eventually lead to congestive heart failure or stroke subsequent to systemic embolism. We hypothesized that host defense activation may be directly involved in tissue proteolytic aggression, in addition to pathogenic effects of bacterial colonization. Methods and Results: IE valve samples collected during surgery (n = 39) were dissected macroscopically by separating vegetations (VG) and the surrounding damaged part of the valve from the adjacent, apparently normal (N) valvular tissue. Corresponding conditioned media were prepared separately by incubation in culture medium. Histological analysis showed an accumulation of platelets and polymorphonuclear neutrophils (PMNs) at the interface between the VG and the underlying tissue. Apoptotic cells (PMNs and valvular cells) were abundantly detected in this area. Plasminogen activators (PA), including urokinase (uPA) and tissue (tPA) types were also associated with the VG. Secreted matrix metalloproteinase (MMP) 9 was also increased in VG, as was leukocyte elastase and myeloperoxidase (MPO).
    [Show full text]
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]
  • Staphylococcus Aureus Exfoliative Toxins: How They Cause Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE To cite this article: JID 122:1070–1077, 2004 provided by Elsevier - Publisher Connector Published by the ology Progress in Dermatology Editor: Alan N. Moshell, M.D. Staphylococcus aureus exfoliative toxins: How they cause disease. Lisa R.W. Plano, M.D., Ph.D. Departments of Pediatrics and Microbiology & Immunology University of Miami School of Medicine, Miami, Florida Abbreviations: cell surface molecules associated with adhesion and BI- bullous impetigo multiple antibiotic resistances including methicillin and ET- exfoliative toxins vancomycin resistance (Centers for Disease Control and EDIN- epidermal cell differentiation inhibitor Prevention, 1997; 2000a; 2000b), all contributing to the ETA- exfoliative toxin A (epidermolysisn A, exfoliatin A) pathogenicity of these organisms. A minimum of 34 ETB- exfoliative toxin B (epidermolysisn B, exfoliatin B) different extracellular proteins are produced by S. ETD- exfoliative toxin D (epidermolysisn D, exfoliatin D) aureus, and many of these have defined roles in the PF- pemphigus foliaceus pathogenesis of their associated diseases (Iandolo, SSSS- Staphylococcal scalded skin syndrome, (pemphi- 1989). Infectious conditions caused by these organisms gus neonatorum, dermatitis exfoliativa neonatorum, can be divided into three major categories; (i) superficial Ritter’s disease) skin infections, skin abcesses and wound infections TEN- toxic epidermal necrolysis including bullous impetigo (BI) and furuncles, (ii) systemic or infections of deep seeded tissues including osteomyelitis, endocarditis, pneumonia and sepsis, and Introduction (iii) conditions caused by intoxication with one of the General Microbiology: Staphylococci are hardy excreted toxins. Among the conditions caused by intoxi- Gram-positive cocci found as bacterial pathogens or cation with an exotoxin are toxic shock syndrome caused commensal organisms in both humans and animals.
    [Show full text]
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma
    Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma Joakim E. Swedberg,‡† Guojie Wu,§† Tunjung Mahatmanto,‡# Thomas Durek,‡ Tom T. Caradoc-Davies,∥ James C. Whisstock,§* Ruby H.P. Law§* and David J. Craik‡* ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia §ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, VIC 3800, Australia. ∥Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia. †J.E.S. and G.W. contributed equally to this work. Keywords: Antifibrinolytics; Fibrinolysis; Inhibitors; Peptides; Plasmin ABSTRACT Antifibrinolytic drugs provide important pharmacological interventions to reduce morbidity and mortality from excessive bleeding during surgery and after trauma. Current drugs used for inhibiting the dissolution of fibrin, the main structural component of blood clots, are associated with adverse events due to lack of potency, high doses and non-selective inhibition mechanisms. These deficiencies warrant the development of a new generation highly potent and selective fibrinolysis inhibitors. Here we use the 14-amino acid backbone-cyclic sunflower trypsin inhibitor-1 scaffold to design a highly potent (Ki = 0.05 nM) inhibitor of the primary serine protease in fibrinolysis, plasmin. This compound displays a million-fold selectivity over other serine proteases in blood, inhibits fibrinolysis in plasma more effectively than the gold-standard therapeutic inhibitor aprotinin and is a promising candidate for development of highly specific fibrinolysis inhibitors with reduced side effects. 1 INTRODUCTION The physiological process of fibrinolysis regulates the dissolution of blood clots and thrombosis.
    [Show full text]
  • The Plasmin–Antiplasmin System: Structural and Functional Aspects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family.
    [Show full text]
  • Development and Binding Characteristics of Phosphonate Inhibitors of Spla Protease from Staphylococcus Aureus
    Development and binding characteristics of phosphonate inhibitors of SplA protease from Staphylococcus aureus Ewa Burchacka,1 Michal Zdzalik,2 Justyna-Stec Niemczyk,3 Katarzyna Pustelny,3 Grzegorz Popowicz,4 Benedykt Wladyka,3,5 Adam Dubin,3 Jan Potempa,2 Marcin Sienczyk,1 Grzegorz Dubin,2,5* and Jozef Oleksyszyn1 1Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland 2Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland 3Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland 4Max-Planck Institute for Biochemistry, NMR Group, Martinsried, Germany 5Malopolska Centre of Biotechnology, Krakow, Poland Received 24 September 2013; Revised 27 November 2013; Accepted 2 December 2013 DOI: 10.1002/pro.2403 Published online 4 December 2013 proteinscience.org Abstract: Staphylococcus aureus is responsible for a variety of human infections, including life- threatening, systemic conditions. Secreted proteome, including a range of proteases, constitutes the major virulence factor of the bacterium. However, the functions of individual enzymes, in par- ticular SplA protease, remain poorly characterized. Here, we report development of specific inhibi- tors of SplA protease. The design, synthesis, and activity of a series of a-aminoalkylphosphonate diaryl esters and their peptidyl derivatives are described. Potent inhibitors of SplA are reported, which may facilitate future investigation of physiological function of the protease. The binding P P modes of the high-affinity compounds Cbz-Phe -(OC6H424-SO2CH3)2 and Suc-Val-Pro-Phe - (OC6H5)2 are revealed by high-resolution crystal structures of complexes with the protease. Sur- prisingly, the binding mode of both compounds deviates from previously characterized canonical interaction of a-aminoalkylphosphonate peptidyl derivatives and family S1 serine proteases.
    [Show full text]
  • Targeting Staphylococcus Aureus Toxins: a Potential Form of Anti-Virulence Therapy
    toxins Review Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy Cin Kong 1, Hui-min Neoh 2 and Sheila Nathan 1,* 1 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; [email protected] 2 UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-3-8921-3862 Academic Editor: Yinduo Ji Received: 18 February 2016; Accepted: 10 March 2016; Published: 15 March 2016 Abstract: Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S.
    [Show full text]
  • Association Between Production of Fibrinolysin Exudative Epidermitis in Pigs
    Acta vet. scand. 1997, 38, 295-297. Brief Communication Association Between Production of Fibrinolysin and Virulence of Staphylococcus hyicus in Relation to Exudative Epidermitis in Pigs Staphylococcus hyicus is the causative agent of of these is fibrinolysin or staphylokinase. exudative epidermitis (EE) in pigs, character­ Staphylokinase is a protein produced by many ized by a generalized infection of the skin with S. aureus and S. hyicus strains (Devriese et al. greasy exudation and exfoliation (L'Ecuyer 1978, Devriese & Kerckhove 1980) that binds 1966). S. hyicus is a natural part ofthe skin flora to plasminogen and converts it into plasmin that of healthy pigs worldwide (Wegener 1992), and dissolves proteins and fibrinogen. The potential several different strains may simultaneously rple of fibrinolysin in pathogenesis of bacterial colonize the same pig (Wegener 1993a). Both infections is not known, but it has been specu­ virulent and avirulent strains can be present si­ lated that it might help the bacteria in obtaining multaneously on diseased piglets (Wegener et amino acids and in colonization by dissolving al. 1993), and virulent strains can be isolated fibrinogen and other proteins. Production offib ­ from healthy carriers (Devriese 1977, Park & rinolysin has previously been described in S. Kang 1988). The pathogenesis of EE has only hyicus from pigs in different countries in Eu­ been studied in a limited number of studies, but rope (Devriese et al. 1978). This study de­ EE most likely occurs as a consequence of skin scribes the occurrence of fibrinolysin produc­ trauma that exposes the dermis and facilitates tion among virulent and avirulent isolates of S.
    [Show full text]
  • Receptor Mediated Catabolism of Plasminogen Activators
    RECEPTOR MEDIATED CATABOLISM OF PLASMINOGEN ACTIVATORS by Philip George Grimsley Thesis submitted for the degree of Doctor of Philosophy from The University of New South Wales School of Medical Sciences 2009 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Grimsley First name: Philip Other name/s: George Abbreviation for degree as given in the University calendar: PhD School: School of Medical Sciences Faculty: Medicine Title: Receptor Mediated Catabolism of Plasminogen Activators Abstract 350 words maximum: (PLEASE TYPE) Humans have two plasminogen activators (PAs), tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), which generate plasmin to breakdown fibrin and other barriers to cell migration. Both PAs are used as pharmaceuticals but their efficacies are limited by their rapid clearance from the circulation, predominantly by parenchymal cells of the liver. At the commencement of the work presented here, the hepatic receptors responsible for mediating the catabolism of the PAs were little understood. tPA degradation by hepatic cell lines was known to depend on the formation of binary complexes with the major PA inhibitor, plasminogen activator inhibitor type-1 (PAI-1). Initial studies presented here established that uPA was catabolised in a fashion similar to tPA by the hepatoma cell line, HepG2. Other laboratories around this time found that the major receptor mediating the binding and endocytosis of the PAs is Low Density Lipoprotein Receptor-related Protein (LRP1). LRP1 is a giant 600 kDa protein that binds a range of structurally and functionally diverse ligands including, activated α2-macroglobulin, apolipoproteins, β-amyloid precursor protein, and a number of serpin-enzymes complexes, including PA•PAI-1 complexes.
    [Show full text]