Fortran Examples), CUDA Team in CINECA (Luca Ferraro, Sergio Orlandini, Stefano Tagliaventi) And/Or Specified Sources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L22: Parallel Programming Language Features (Chapel and Mapreduce)
12/1/09 Administrative • Schedule for the rest of the semester - “Midterm Quiz” = long homework - Handed out over the holiday (Tuesday, Dec. 1) L22: Parallel - Return by Dec. 15 - Projects Programming - 1 page status report on Dec. 3 – handin cs4961 pdesc <file, ascii or PDF ok> Language Features - Poster session dry run (to see material) Dec. 8 (Chapel and - Poster details (next slide) MapReduce) • Mailing list: [email protected] December 1, 2009 12/01/09 Poster Details Outline • I am providing: • Global View Languages • Foam core, tape, push pins, easels • Chapel Programming Language • Plan on 2ft by 3ft or so of material (9-12 slides) • Map-Reduce (popularized by Google) • Content: • Reading: Ch. 8 and 9 in textbook - Problem description and why it is important • Sources for today’s lecture - Parallelization challenges - Brad Chamberlain, Cray - Parallel Algorithm - John Gilbert, UCSB - How are two programming models combined? - Performance results (speedup over sequential) 12/01/09 12/01/09 1 12/1/09 Shifting Gears Global View Versus Local View • What are some important features of parallel • P-Independence programming languages (Ch. 9)? - If and only if a program always produces the same output on - Correctness the same input regardless of number or arrangement of processors - Performance - Scalability • Global view - Portability • A language construct that preserves P-independence • Example (today’s lecture) • Local view - Does not preserve P-independent program behavior - Example from previous lecture? And what about ease -
Evaluation of the Coarray Fortran Programming Model on the Example of a Lattice Boltzmann Code
Evaluation of the Coarray Fortran Programming Model on the Example of a Lattice Boltzmann Code Klaus Sembritzki Georg Hager Bettina Krammer Friedrich-Alexander University Friedrich-Alexander University Université de Versailles Erlangen-Nuremberg Erlangen-Nuremberg St-Quentin-en-Yvelines Erlangen Regional Computing Erlangen Regional Computing Exascale Computing Center (RRZE) Center (RRZE) Research (ECR) Martensstrasse 1 Martensstrasse 1 45 Avenue des Etats-Unis 91058 Erlangen, Germany 91058 Erlangen, Germany 78000 Versailles, France [email protected] [email protected] [email protected] Jan Treibig Gerhard Wellein Friedrich-Alexander University Friedrich-Alexander University Erlangen-Nuremberg Erlangen-Nuremberg Erlangen Regional Computing Erlangen Regional Computing Center (RRZE) Center (RRZE) Martensstrasse 1 Martensstrasse 1 91058 Erlangen, Germany 91058 Erlangen, Germany [email protected] [email protected] ABSTRACT easier to learn. The Lattice Boltzmann method is an explicit time-stepping sche- With the Fortran 2008 standard, coarrays became a native Fort- me for the numerical simulation of fluids. In recent years it has ran feature [2]. The “hybrid” nature of modern massively parallel gained popularity since it is straightforward to parallelize and well systems, which comprise shared-memory nodes built from multico- suited for modeling complex boundary conditions and multiphase re processor chips, can be addressed by the compiler and runtime flows. Starting from an MPI/OpenMP-parallel 3D prototype im- system by using shared memory for intra-node access to codimen- plementation of the algorithm in Fortran90, we construct several sions. Inter-node access may either by conducted using an existing coarray-based versions and compare their performance and requi- messaging layer such as MPI or SHMEM, or carried out natively red programming effort to the original code, demonstrating the per- using the primitives provided by the network infrastructure. -
A Comparison of Coarray Fortran, Unified Parallel C and T
Technical Report RAL-TR-2005-015 8 December 2005 Novel Parallel Languages for Scientific Computing ± a comparison of Co-Array Fortran, Unified Parallel C and Titanium J.V.Ashby Computational Science and Engineering Department CCLRC Rutherford Appleton Laboratory [email protected] Abstract With the increased use of parallel computers programming languages need to evolve to support parallelism. Three languages built on existing popular languages, are considered: Co-array Fortran, Universal Parallel C and Titanium. The features of each language which support paralleism are explained, a simple example is programmed and the current status and availability of the languages is reviewed. Finally we also review work on the performance of algorithms programmed in these languages. In most cases they perform favourably with the same algorithms programmed using message passing due to the much lower latency in their communication model. 1 1. Introduction As the use of parallel computers becomes increasingly prevalent there is an increased need for languages and programming methodologies which support parallelism. Ideally one would like an automatic parallelising compiler which could analyse a program written sequentially, identify opportunities for parallelisation and implement them without user knowledge or intervention. Attempts in the past to produce such compilers have largely failed (though automatic vectorising compilers, which may be regarded as one specific form of parallelism, have been successful, and the techniques are now a standard part of most optimising compilers for pipelined processors). As a result, interest in tools to support parallel programming has largely concentrated on two main areas: directive driven additions to existing languages and data-passing libraries. -
Parallel Programming
Parallel Programming Libraries and implementations Outline • MPI – distributed memory de-facto standard • Using MPI • OpenMP – shared memory de-facto standard • Using OpenMP • CUDA – GPGPU de-facto standard • Using CUDA • Others • Hybrid programming • Xeon Phi Programming • SHMEM • PGAS MPI Library Distributed, message-passing programming Message-passing concepts Explicit Parallelism • In message-passing all the parallelism is explicit • The program includes specific instructions for each communication • What to send or receive • When to send or receive • Synchronisation • It is up to the developer to design the parallel decomposition and implement it • How will you divide up the problem? • When will you need to communicate between processes? Message Passing Interface (MPI) • MPI is a portable library used for writing parallel programs using the message passing model • You can expect MPI to be available on any HPC platform you use • Based on a number of processes running independently in parallel • HPC resource provides a command to launch multiple processes simultaneously (e.g. mpiexec, aprun) • There are a number of different implementations but all should support the MPI 2 standard • As with different compilers, there will be variations between implementations but all the features specified in the standard should work. • Examples: MPICH2, OpenMPI Point-to-point communications • A message sent by one process and received by another • Both processes are actively involved in the communication – not necessarily at the same time • Wide variety of semantics provided: • Blocking vs. non-blocking • Ready vs. synchronous vs. buffered • Tags, communicators, wild-cards • Built-in and custom data-types • Can be used to implement any communication pattern • Collective operations, if applicable, can be more efficient Collective communications • A communication that involves all processes • “all” within a communicator, i.e. -
Outro to Parallel Computing
Outro To Parallel Computing John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Purpose of this talk Now that you know how to do some real parallel programming, you may wonder how much you don’t know. With your newly informed perspective we will take a look at the parallel software landscape so that you can see how much of it you are equipped to traverse. How parallel is a code? ⚫ Parallel performance is defined in terms of scalability Strong Scalability Can we get faster for a given problem size? Weak Scalability Can we maintain runtime as we scale up the problem? Weak vs. Strong scaling More Processors Weak Scaling More accurate results More Processors Strong Scaling Faster results (Tornado on way!) Your Scaling Enemy: Amdahl’s Law How many processors can we really use? Let’s say we have a legacy code such that is it only feasible to convert half of the heavily used routines to parallel: Amdahl’s Law If we run this on a parallel machine with five processors: Our code now takes about 60s. We have sped it up by about 40%. Let’s say we use a thousand processors: We have now sped our code by about a factor of two. Is this a big enough win? Amdahl’s Law ⚫ If there is x% of serial component, speedup cannot be better than 100/x. ⚫ If you decompose a problem into many parts, then the parallel time cannot be less than the largest of the parts. ⚫ If the critical path through a computation is T, you cannot complete in less time than T, no matter how many processors you use . -
The Continuing Renaissance in Parallel Programming Languages
The continuing renaissance in parallel programming languages Simon McIntosh-Smith University of Bristol Microelectronics Research Group [email protected] © Simon McIntosh-Smith 1 Didn’t parallel computing use to be a niche? © Simon McIntosh-Smith 2 When I were a lad… © Simon McIntosh-Smith 3 But now parallelism is mainstream Samsung Exynos 5 Octa: • 4 fast ARM cores and 4 energy efficient ARM cores • Includes OpenCL programmable GPU from Imagination 4 HPC scaling to millions of cores Tianhe-2 at NUDT in China 33.86 PetaFLOPS (33.86x1015), 16,000 nodes Each node has 2 CPUs and 3 Xeon Phis 3.12 million cores, $390M, 17.6 MW, 720m2 © Simon McIntosh-Smith 5 A renaissance in parallel programming Metal C++11 OpenMP OpenCL Erlang Unified Parallel C Fortress XC Go Cilk HMPP CHARM++ CUDA Co-Array Fortran Chapel Linda X10 MPI Pthreads C++ AMP © Simon McIntosh-Smith 6 Groupings of || languages Partitioned Global Address Space GPU languages: (PGAS): • OpenCL • Fortress • CUDA • X10 • HMPP • Chapel • Metal • Co-array Fortran • Unified Parallel C Object oriented: • C++ AMP CSP: XC • CHARM++ Message passing: MPI Multi-threaded: • Cilk Shared memory: OpenMP • Go • C++11 © Simon McIntosh-Smith 7 Emerging GPGPU standards • OpenCL, DirectCompute, C++ AMP, … • Also OpenMP 4.0, OpenACC, CUDA… © Simon McIntosh-Smith 8 Apple's Metal • A "ground up" parallel programming language for GPUs • Designed for compute and graphics • Potential to replace OpenGL compute shaders, OpenCL/GL interop etc. • Close to the "metal" • Low overheads • "Shading" language based -
Cafe: Coarray Fortran Extensions for Heterogeneous Computing
2016 IEEE International Parallel and Distributed Processing Symposium Workshops CAFe: Coarray Fortran Extensions for Heterogeneous Computing Craig Rasmussen∗, Matthew Sottile‡, Soren Rasmussen∗ Dan Nagle† and William Dumas∗ ∗ University of Oregon, Eugene, Oregon †NCAR, Boulder, Colorado ‡Galois, Portland, Oregon Abstract—Emerging hybrid accelerator architectures are often simple tuning if the architecture is fundamentally different than proposed for inclusion as components in an exascale machine, previous ones. not only for performance reasons but also to reduce total power A number of options are available to an HPC programmer consumption. Unfortunately, programmers of these architectures face a daunting and steep learning curve that frequently requires beyond just using a serial language with MPI or OpenMP. learning a new language (e.g., OpenCL) or adopting a new New parallel languages have been under development for programming model. Furthermore, the distributed (and fre- over a decade, for example, Chapel and the PGAS languages quently multi-level) nature of the memory organization of clusters including Coarray Fortran (CAF). Options for heterogeneous of these machines provides an additional level of complexity. computing include usage of OpenACC, CUDA, CUDA For- This paper presents preliminary work examining how Fortran coarray syntax can be extended to provide simpler access to tran, and OpenCL for programming attached accelerator de- accelerator architectures. This programming model integrates the vices. Each of these choices provides the programmer with Partitioned Global Address Space (PGAS) features of Fortran abstractions over parallel systems that expose different levels with some of the more task-oriented constructs in OpenMP of detail about the specific systems to compile to, and as 4.0 and OpenACC. -
C Language Extensions for Hybrid CPU/GPU Programming with Starpu
C Language Extensions for Hybrid CPU/GPU Programming with StarPU Ludovic Courtès arXiv:1304.0878v2 [cs.MS] 10 Apr 2013 RESEARCH REPORT N° 8278 April 2013 Project-Team Runtime ISSN 0249-6399 ISRN INRIA/RR--8278--FR+ENG C Language Extensions for Hybrid CPU/GPU Programming with StarPU Ludovic Courtès Project-Team Runtime Research Report n° 8278 — April 2013 — 22 pages Abstract: Modern platforms used for high-performance computing (HPC) include machines with both general- purpose CPUs, and “accelerators”, often in the form of graphical processing units (GPUs). StarPU is a C library to exploit such platforms. It provides users with ways to define tasks to be executed on CPUs or GPUs, along with the dependencies among them, and by automatically scheduling them over all the available processing units. In doing so, it also relieves programmers from the need to know the underlying architecture details: it adapts to the available CPUs and GPUs, and automatically transfers data between main memory and GPUs as needed. While StarPU’s approach is successful at addressing run-time scheduling issues, being a C library makes for a poor and error-prone programming interface. This paper presents an effort started in 2011 to promote some of the concepts exported by the library as C language constructs, by means of an extension of the GCC compiler suite. Our main contribution is the design and implementation of language extensions that map to StarPU’s task programming paradigm. We argue that the proposed extensions make it easier to get started with StarPU, eliminate errors that can occur when using the C library, and help diagnose possible mistakes. -
Unified Parallel C (UPC)
Unified Parallel C (UPC) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP 422 Lecture 21 March 27, 2008 Acknowledgments • Supercomputing 2007 tutorial on “Programming using the Partitioned Global Address Space (PGAS) Model” by Tarek El- Ghazawi and Vivek Sarkar —http://sc07.supercomputing.org/schedule/event_detail.php?evid=11029 2 Programming Models Process/Thread Address Space Message Passing Shared Memory DSM/PGAS MPI OpenMP UPC 3 The Partitioned Global Address Space (PGAS) Model • Aka the Distributed Shared Memory (DSM) model • Concurrent threads with a Th Th Th 0 … n-2 n-1 partitioned shared space —Memory partition Mi has affinity to thread Thi • (+)ive: x —Data movement is implicit —Data distribution simplified with M0 … Mn-2 Mn-1 global address space • (-)ive: —Computation distribution and Legend: synchronization still remain programmer’s responsibility Thread/Process Memory Access —Lack of performance transparency of local vs. remote Address Space accesses • UPC, CAF, Titanium, X10, … 4 What is Unified Parallel C (UPC)? • An explicit parallel extension of ISO C • Single global address space • Collection of threads —each thread bound to a processor —each thread has some private data —part of the shared data is co-located with each thread • Set of specs for a parallel C —v1.0 completed February of 2001 —v1.1.1 in October of 2003 —v1.2 in May of 2005 • Compiler implementations by industry and academia 5 UPC Execution Model • A number of threads working independently in a SPMD fashion —MYTHREAD specifies -
IBM XL Unified Parallel C User's Guide
IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview) IBM XL Unified Parallel C User’s Guide Version 11.0 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview) IBM XL Unified Parallel C User’s Guide Version 11.0 Note Before using this information and the product it supports, read the information in “Notices” on page 97. © Copyright International Business Machines Corporation 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Chapter 1. Parallel programming and Declarations ..............39 Unified Parallel C...........1 Type qualifiers ............39 Parallel programming ...........1 Declarators .............41 Partitioned global address space programming model 1 Statements and blocks ...........42 Unified Parallel C introduction ........2 Synchronization statements ........42 Iteration statements...........46 Chapter 2. Unified Parallel C Predefined macros and directives .......47 Unified Parallel C directives ........47 programming model .........3 Predefined macros ...........48 Distributed shared memory programming ....3 Data affinity and data distribution .......3 Chapter 5. Unified Parallel C library Memory consistency ............5 functions..............49 Synchronization mechanism .........6 Utility functions .............49 Chapter 3. Using the XL Unified Parallel Program termination ..........49 Dynamic memory allocation ........50 C compiler .............9 Pointer-to-shared manipulation .......56 Compiler options .............9 -
Coarray Fortran Runtime Implementation in Openuh
COARRAY FORTRAN RUNTIME IMPLEMENTATION IN OPENUH A Thesis Presented to the Faculty of the Department of Computer Science University of Houston In Partial Fulfillment of the Requirements for the Degree Master of Science By Debjyoti Majumder December 2011 COARRAY FORTRAN RUNTIME IMPLEMENTATION IN OPENUH Debjyoti Majumder APPROVED: Dr. Barbara Chapman, Chairman Dept. of Computer Science Dr. Jaspal Subhlok Dept. of Computer Science Dr. Terrence Liao TOTAL E&P Research & Technology USA, LLC Dean, College of Natural Sciences and Mathematics ii Acknowledgements I would like to express my gratitude to Dr. Barbara Chapman for providing financial support and for creating an excellent environment for research. I would like to thank my mentor Deepak Eachempati. Without his guidance, this work would not have been possible. I sincerely thank TOTAL S.A. for funding this project and Dr. Terrence Liao for his valuable inputs and help in performing experiments on TOTAL's hardware. I also thank the interns at TOTAL, Asma Farjallah, and France Boillod-Cerneux for the applications that I used for performance evaluation. I thank Hyoungjoon Jun for his earlier work on the CAF runtime. I thank Tony Curtis for his suggestions and excellent work on maintaining the infrastructure on which I ran my experiments. I thank Dr.Edgar Gabriel for answering all my questions and his help with using the shark cluster. I also thank the Berkeley Lab and PNNL's ARMCI developers for their guidance in using GASNet and ARMCI. Lastly, I would like to thank the Department of Computer Science for giving me the opportunity to be in this great country of USA and all my lab-mates and friends. -
Overview of the Global Arrays Parallel Software Development Toolkit: Introduction to Global Address Space Programming Models
Overview of the Global Arrays Parallel Software Development Toolkit: Introduction to Global Address Space Programming Models P. Saddayappan2, Bruce Palmer1, Manojkumar Krishnan1, Sriram Krishnamoorthy1, Abhinav Vishnu1, Daniel Chavarría1, Patrick Nichols1, Jeff Daily1 1Pacific Northwest National Laboratory 2Ohio State University Outline of the Tutorial ! " Parallel programming models ! " Global Arrays (GA) programming model ! " GA Operations ! " Writing, compiling and running GA programs ! " Basic, intermediate, and advanced calls ! " With C and Fortran examples ! " GA Hands-on session 2 Performance vs. Abstraction and Generality Domain Specific “Holy Grail” Systems GA CAF MPI OpenMP Scalability Autoparallelized C/Fortran90 Generality 3 Parallel Programming Models ! " Single Threaded ! " Data Parallel, e.g. HPF ! " Multiple Processes ! " Partitioned-Local Data Access ! " MPI ! " Uniform-Global-Shared Data Access ! " OpenMP ! " Partitioned-Global-Shared Data Access ! " Co-Array Fortran ! " Uniform-Global-Shared + Partitioned Data Access ! " UPC, Global Arrays, X10 4 High Performance Fortran ! " Single-threaded view of computation ! " Data parallelism and parallel loops ! " User-specified data distributions for arrays ! " Compiler transforms HPF program to SPMD program ! " Communication optimization critical to performance ! " Programmer may not be conscious of communication implications of parallel program HPF$ Independent HPF$ Independent s=s+1 DO I = 1,N DO I = 1,N A(1:100) = B(0:99)+B(2:101) HPF$ Independent HPF$ Independent HPF$ Independent