Mouse Usp44 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Usp44 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Usp44 Knockout Project (CRISPR/Cas9) Objective: To create a Usp44 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Usp44 gene (NCBI Reference Sequence: NM_001206851 ; Ensembl: ENSMUSG00000020020 ) is located on Mouse chromosome 10. 6 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000216224). Exon 2~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit chromosomal instability, aneuploidy and increased tumor incidence. Exon 2 starts from the coding region. Exon 2~3 covers 76.0% of the coding region. The size of effective KO region: ~3259 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 6 Legends Exon of mouse Usp44 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 3 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 8 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(25.05% 501) | C(17.75% 355) | T(31.4% 628) | G(25.8% 516) Note: The 2000 bp section upstream of Exon 2 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(25.3% 506) | C(21.75% 435) | T(28.2% 564) | G(24.75% 495) Note: The 2000 bp section downstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr10 + 93843691 93845690 2000 browser details YourSeq 97 387 490 2000 97.2% chr2 - 147292101 147292206 106 browser details YourSeq 95 387 496 2000 94.4% chr3 + 81823210 81823407 198 browser details YourSeq 93 387 492 2000 95.3% chr1 + 188793585 188793754 170 browser details YourSeq 91 387 496 2000 94.3% chr1 + 110573756 110573873 118 browser details YourSeq 89 388 492 2000 93.3% chr11 - 83555912 83556048 137 browser details YourSeq 89 389 495 2000 94.0% chr12 + 20310444 20310566 123 browser details YourSeq 87 387 478 2000 99.0% chr19 + 28135159 28135272 114 browser details YourSeq 86 594 834 2000 85.0% chr1 - 179272121 179272446 326 browser details YourSeq 85 396 494 2000 95.8% chr7 + 128199899 128200035 137 browser details YourSeq 84 387 494 2000 95.8% chr16 - 6068703 6068850 148 browser details YourSeq 82 398 492 2000 96.7% chr11 + 57119558 57119662 105 browser details YourSeq 82 397 490 2000 96.7% chr1 + 62690364 62690459 96 browser details YourSeq 81 394 492 2000 87.0% chr5 + 27724926 27725018 93 browser details YourSeq 79 387 490 2000 86.6% chr18 - 21428151 21428232 82 browser details YourSeq 77 404 492 2000 96.5% chr7 + 128199991 128200081 91 browser details YourSeq 75 618 822 2000 79.1% chr2 - 132599776 132599972 197 browser details YourSeq 75 616 824 2000 73.8% chr3 + 30956926 30957067 142 browser details YourSeq 74 387 497 2000 82.8% chr2 - 56287856 56287938 83 browser details YourSeq 74 404 491 2000 95.1% chr17 - 10726046 10726141 96 Note: The 2000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr10 + 93850347 93852346 2000 browser details YourSeq 247 1752 2000 2000 99.6% chr10 + 93852303 93852551 249 browser details YourSeq 112 266 1658 2000 89.6% chr15 + 84919624 85277991 358368 browser details YourSeq 84 468 1592 2000 92.8% chr11 - 100937666 100953051 15386 browser details YourSeq 80 207 523 2000 92.6% chr2 - 154208287 154208738 452 browser details YourSeq 74 1468 1598 2000 80.0% chr1 - 74407859 74407988 130 browser details YourSeq 72 1469 1657 2000 87.5% chr5 + 134598815 134993450 394636 browser details YourSeq 69 210 562 2000 93.7% chr5 + 77236576 77237150 575 browser details YourSeq 69 424 523 2000 90.7% chr17 + 47614832 47615040 209 browser details YourSeq 68 1468 1655 2000 82.0% chr9 + 75627818 75628007 190 browser details YourSeq 66 1465 1655 2000 91.3% chr1 - 180245341 180627668 382328 browser details YourSeq 66 431 523 2000 92.4% chr8 + 75163484 75163580 97 browser details YourSeq 65 1474 1654 2000 77.8% chr14 - 48962322 48962502 181 browser details YourSeq 65 424 520 2000 89.2% chr12 - 44161753 44161852 100 browser details YourSeq 65 208 304 2000 83.6% chr11 + 79820806 79820902 97 browser details YourSeq 64 1468 1653 2000 84.6% chr16 - 16595815 16595998 184 browser details YourSeq 64 1464 1592 2000 90.6% chr1 + 39540708 39540835 128 browser details YourSeq 63 208 288 2000 88.9% chr17 - 47108326 47108406 81 browser details YourSeq 63 1466 1641 2000 92.2% chr1 - 156549905 156550311 407 browser details YourSeq 63 431 524 2000 92.0% chr11 + 101765544 101765901 358 Note: The 2000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 5 of 8 https://www.alphaknockout.com Gene and protein information: Usp44 ubiquitin specific peptidase 44 [ Mus musculus (house mouse) ] Gene ID: 327799, updated on 24-Oct-2019 Gene summary Official Symbol Usp44 provided by MGI Official Full Name ubiquitin specific peptidase 44 provided by MGI Primary source MGI:MGI:3045318 See related Ensembl:ENSMUSG00000020020 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as E430004F17Rik Expression Biased expression in testis adult (RPKM 24.5), CNS E11.5 (RPKM 1.5) and 1 other tissue See more Orthologs human all Genomic context Location: 10; 10 C2 See Usp44 in Genome Data Viewer Exon count: 14 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 10 NC_000076.6 (93819956..93860210) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 10 NC_000076.5 (93294300..93311283) Chromosome 10 - NC_000076.6 Page 6 of 8 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Usp44 ENSMUSG00000020020 Description ubiquitin specific peptidase 44 [Source:MGI Symbol;Acc:MGI:3045318] Gene Synonyms E430004F17Rik Location Chromosome 10: 93,831,555-93,858,088 forward strand. GRCm38:CM001003.2 About this gene This gene has 2 transcripts (splice variants), 187 orthologues, 49 paralogues, is a member of 1 Ensembl protein family and is associated with 10 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Usp44-202 ENSMUST00000216224.1 2449 711aa ENSMUSP00000149020.1 Protein coding - Q8C2S0 TSL:5 GENCODE basic APPRIS P1 Usp44-201 ENSMUST00000095333.5 2946 No protein - lncRNA - - TSL:1 46.53 kb Forward strand 93.83Mb 93.84Mb 93.85Mb 93.86Mb Genes (Comprehensive set... Usp44-201 >lncRNA Usp44-202 >protein coding Contigs AC124686.3 > Genes < Metap2-203nonsense mediated decay (Comprehensive set... < Metap2-201protein coding < Metap2-216retained intron < Metap2-206protein coding < Metap2-210protein coding < Metap2-208protein coding < Metap2-207retained intron < Metap2-214protein coding Regulatory Build 93.83Mb 93.84Mb 93.85Mb 93.86Mb Reverse strand 46.53 kb Regulation Legend CTCF Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000216224 24.27 kb Forward strand Usp44-202 >protein coding ENSMUSP00000149... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily SSF57850 Papain-like cysteine peptidase superfamily SMART Zinc finger, UBP-type Pfam Zinc finger, UBP-type Peptidase C19, ubiquitin carboxyl-terminal hydrolase PROSITE profiles Zinc finger, UBP-type Ubiquitin specific protease domain PROSITE patterns Ubiquitin specific protease, conserved site Ubiquitin specific protease, conserved site PANTHER PTHR21646:SF15 PTHR21646 Gene3D Zinc finger, RING/FYVE/PHD-type 3.90.70.10 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe deletion missense variant synonymous variant Scale bar 0 60 120 180 240 300 360 420 480 540 600 711 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • DNA Aneuploidy in Malignant Salivary Gland
    Brazilian Dental Journal (2017) 28(2): 148-151 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201701018 1Department of Pathology, DNA Aneuploidy in Malignant Salivary Biological Sciences Institute, UFMG - Universidade Federal de Minas Gland Neoplasms is Independent Gerais, Belo Horizonte, MG, Brazil 2Division of Salivary and Mucosal of USP44 Protein Expression Research, Oral Pathology, King’s College London Dental Institute, London, UK 3Department of Oral Pathology and Medicine, Dental School, UFMG - Universidade Federal de Minas Vanessa Fátima Bernardes1, Edward W Odell2, Ricardo Santiago Gomez3 Gerais, Belo Horizonte, MG, Brazil Carolina Cavalieri Gomes1 Correspondence: Vanessa F. Bernardes, Av. Presidente Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brasil. Tel: +55-31-3409-2477 e-mail: [email protected] Chromosomal instability, leading to aneuploidy, is one of the hallmarks of human cancers. USP44 (ubiquitin specific peptidase 44) is an important molecule that plays a regulatory role in the mitotic checkpoint and USP44 loss causes chromosome mis- segregation, aneuploidy and tumorigenesis in vivo. In this study, it was investigated the Key Words: ubiquitin specific immunoexpression of USP44 in 28 malignant salivary gland neoplasms and associated the protease, mucoepidermoid results with DNA ploidy status assessed by image cytometry. USP44 protein was widely carcinoma, adenoid cystic expressed in most of the tumor samples and no clear association could be established carcinoma, polymorphous low between its expression and DNA ploidy status or tumor size. On this basis, it may be grade adenocarcinoma, carcinoma concluded that the aneuploidy of the salivary gland cancers included in this study was ex-pleomorphic adenoma, not driven by loss of USP44 protein expression.
    [Show full text]
  • Pan-Cancer Analysis of Homozygous Deletions in Primary Tumours Uncovers Rare Tumour Suppressors
    Corrected: Author correction; Corrected: Author correction ARTICLE DOI: 10.1038/s41467-017-01355-0 OPEN Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors Jiqiu Cheng1,2, Jonas Demeulemeester 3,4, David C. Wedge5,6, Hans Kristian M. Vollan2,3, Jason J. Pitt7,8, Hege G. Russnes2,9, Bina P. Pandey1, Gro Nilsen10, Silje Nord2, Graham R. Bignell5, Kevin P. White7,11,12,13, Anne-Lise Børresen-Dale2, Peter J. Campbell5, Vessela N. Kristensen2, Michael R. Stratton5, Ole Christian Lingjærde 10, Yves Moreau1 & Peter Van Loo 3,4 1234567890 Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, we build a compendium of 2218 primary tumours across 12 human cancer types and sys- tematically screen for homozygous deletions, aiming to identify rare tumour suppressors. Our analysis defines 96 genomic regions recurrently targeted by homozygous deletions. These recurrent homozygous deletions occur either over tumour suppressors or over fragile sites, regions of increased genomic instability. We construct a statistical model that separates fragile sites from regions showing signatures of positive selection for homozygous deletions and identify candidate tumour suppressors within those regions. We find 16 established tumour suppressors and propose 27 candidate tumour suppressors. Several of these genes (including MGMT, RAD17, and USP44) show prior evidence of a tumour suppressive function. Other candidate tumour suppressors, such as MAFTRR, KIAA1551, and IGF2BP2, are novel. Our study demonstrates how rare tumour suppressors can be identified through copy number meta-analysis. 1 Department of Electrical Engineering (ESAT) and iMinds Future Health Department, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD)
    CLINICAL RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2018; 24: 1340-1358 DOI: 10.12659/MSM.908923 Received: 2018.01.11 Accepted: 2018.02.08 Novel Genetic Variants of Sporadic Atrial Septal Published: 2018.03.05 Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES) Authors’ Contribution: ABCDEF 1,2,3 Yong Liu* 1 Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Study Design A A 1,2 Yu Cao* Medical University, Kunming, Yunnan, P.R. China Data Collection B 2 Department of Cardiovascular Surgery, The First Peoples’ Hospital of Yunnan Statistical Analysis C G 1,3 Yaxiong Li* Province, Kunming, Yunnan, P.R. China Data Interpretation D E 4 Dongyun Lei* 3 Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, Manuscript Preparation E E 1,3 Lin Li P.R. China. Literature Search F 4 The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, Funds Collection G G 1,3 Zong Liu Hou P.R. China F 1,3 Shen Han G 1 Mingyao Meng C 1 Jianlin Shi G 1,3 Yayong Zhang B 1,3 Yi Wang B 1 Zhaoyi Niu G 1 Yanhua Xie B 1 Benshan Xiao B 1 Yuanfei Wang C 1 Xiao Li F 1 Lirong Yang ACDE 1,3 Wenju Wang AG 2 Lihong Jiang * Joint first authors; Yong Liu, Yu Cao, Yaxiong Li, Dongyun Lei Corresponding Authors: Lihong Jiang, e-mail: [email protected], Wenju Wang, e-mail: [email protected] Source of support: This study was supported by grants from National Natural Science Foundation of China (No.
    [Show full text]
  • De Novo Mutations in Histone Modifying Genes in Congenital Heart Disease
    De novo mutations in histone modifying genes in congenital heart disease The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zaidi, S., M. Choi, H. Wakimoto, L. Ma, J. Jiang, J. D. Overton, A. Romano-Adesman, et al. 2013. “De novo mutations in histone modifying genes in congenital heart disease.” Nature 498 (7453): 220-223. doi:10.1038/nature12141. http://dx.doi.org/10.1038/ nature12141. Published Version doi:10.1038/nature12141 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879354 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2013 December 13. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nature. 2013 June 13; 498(7453): 220–223. doi:10.1038/nature12141. De novo mutations in histone modifying genes in congenital heart disease Samir Zaidi1,2,*, Murim Choi1,2,*, Hiroko Wakimoto3, Lijiang Ma4, Jianming Jiang3,5, John D. Overton1,6,7, Angela Romano-Adesman8, Robert D. Bjornson7,9, Roger E. Breitbart10, Kerry K. Brown3, Nicholas J. Carriero7,9, Yee Him Cheung11, John Deanfield12, Steve DePalma3, Khalid A. Fakhro1,2, Joseph Glessner13, Hakon Hakonarson13,14, Michael Italia15, Jonathan R. Kaltman16, Juan Kaski12, Richard Kim17, Jennie K. Kline18, Teresa Lee4, Jeremy Leipzig15, Alexander Lopez1,6,7, Shrikant M.
    [Show full text]
  • DEFINING the FUNCTIONS of USP22 and USP44 in REGULATION of H2BUB1 LEVELS Xianjiang Lan
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2016 DEFINING THE FUNCTIONS OF USP22 AND USP44 IN REGULATION OF H2BUB1 LEVELS xianjiang Lan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, Cancer Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Lan, xianjiang, "DEFINING THE FUNCTIONS OF USP22 AND USP44 IN REGULATION OF H2BUB1 LEVELS" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 686. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/686 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. DEFINING THE FUNCTIONS OF USP22 AND USP44 IN REGULATION OF H2BUB1 LEVELS BY Xianjiang Lan, Ph.D. Candidate APPROVED: _____________________________________
    [Show full text]
  • Title: a Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic
    bioRxiv preprint doi: https://doi.org/10.1101/517490; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title Page: 2 3 Title: A yeast phenomic model for the influence of Warburg metabolism on genetic 4 buffering of doxorubicin 5 6 Authors: Sean M. Santos1 and John L. Hartman IV1 7 1. University of Alabama at Birmingham, Department of Genetics, Birmingham, AL 8 Email: [email protected], [email protected] 9 Corresponding author: [email protected] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/517490; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 26 Abstract: 27 Background: 28 Saccharomyces cerevisiae represses respiration in the presence of adequate glucose, 29 mimicking the Warburg effect, termed aerobic glycolysis. We conducted yeast phenomic 30 experiments to characterize differential doxorubicin-gene interaction, in the context of 31 respiration vs. glycolysis. The resulting systems level biology about doxorubicin 32 cytotoxicity, including the influence of the Warburg effect, was integrated with cancer 33 pharmacogenomics data to identify potentially causal correlations between differential 34 gene expression and anti-cancer efficacy.
    [Show full text]
  • Bioinformatic Gene Analysis for Potential Biomarkers And
    Zou et al. J Transl Med (2019) 17:45 https://doi.org/10.1186/s12967-019-1790-x Journal of Translational Medicine RESEARCH Open Access Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fbrillation-related stroke Rongjun Zou1†, Dingwen Zhang1†, Lei Lv1†, Wanting Shi2, Zijiao Song3, Bin Yi1, Bingjia Lai4, Qian Chen5, Songran Yang6,7* and Ping Hua1* Abstract Background: Atrial fbrillation (AF) is one of the most prevalent sustained arrhythmias, however, epidemiological data may understate its actual prevalence. Meanwhile, AF is considered to be a major cause of ischemic strokes due to irregular heart-rhythm, coexisting chronic vascular infammation, and renal insufciency, and blood stasis. We studied co-expressed genes to understand relationships between atrial fbrillation (AF) and stroke and reveal potential biomarkers and therapeutic targets of AF-related stroke. Methods: AF-and stroke-related diferentially expressed genes (DEGs) were identifed via bioinformatic analysis Gene Expression Omnibus (GEO) datasets GSE79768 and GSE58294, respectively. Subsequently, extensive target prediction and network analyses methods were used to assess protein–protein interaction (PPI) networks, Gene Ontology (GO) terms and pathway enrichment for DEGs, and co-expressed DEGs coupled with corresponding predicted miRNAs involved in AF and stroke were assessed as well. Results: We identifed 489, 265, 518, and 592 DEGs in left atrial specimens and cardioembolic stroke blood samples at < 3, 5, and 24 h, respectively. LRRK2, CALM1, CXCR4, TLR4, CTNNB1, and CXCR2 may be implicated in AF and the hub- genes of CD19, FGF9, SOX9, GNGT1, and NOG may be associated with stroke. Finally, co-expressed DEGs of ZNF566, PDZK1IP1, ZFHX3, and PITX2 coupled with corresponding predicted miRNAs, especially miR-27a-3p, miR-27b-3p, and miR-494-3p may be signifcantly associated with AF-related stroke.
    [Show full text]
  • W O 2019/067145 Al 04 April 2019 (04.04.2019) W IPO I PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111ii111liiili International Bureau (10) International Publication Number (43) International Publication Date W O 2019/067145 Al 04 April 2019 (04.04.2019) W IPO I PCT (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, A61K47/40 (2017.01) A61K 9/08 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K9/00(2006.01) Rule 4.17: (21) International Application Number: Declarations under be granted a PCT/US2018/048414 - as to applicant's entitlement to applyfor and patent (Rule 4.17(i)) (22) International Filing Date: - as to the applicant'sentitlement to claim the priority ofthe 28 August 2018 (28.08.2018) earlier application (Rule 4.17(iii)) (25) Filing Language: English Published: (26) Publication Language: English with internationalsearch report (Art. 21(3)) (30) Priority Data: 62/565,053 28 September 2017 (28.09.2017) US 62/573,658 17 October 2017 (17.10.2017) US 62/586,826 15 November 2017 (15.11.2017) US 62/551,193 04 December 2017 (04.12.2017) US 62/643,694 15 March 2018 (15.03.2018) US 62/679,912 03 June 2018 (03.06.2018) US (71) Applicant: ASDERA LLC [US/US]; 220 E. 70th Street, #5C, New York, NY 10021 (US). (72) Inventor: WITTKOWSKI, Knut, M.; 220 E. 70th Street, #5C, New York, NY 10021 (US). (74) Agent: ZURAWSKI, John, A. et al.; BALLARD SPAHR LLP, 1735 Market Street, 51st Floor, Philadelphia, PA 19103 (US). (81) Designated States (unless
    [Show full text]
  • Homo Sapiens, Homo Neanderthalensis and the Denisova Specimen: New Insights on Their Evolutionary Histories Using Whole-Genome Comparisons
    Genetics and Molecular Biology, 35, 4 (suppl), 904-911 (2012) Copyright © 2012, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Homo sapiens, Homo neanderthalensis and the Denisova specimen: New insights on their evolutionary histories using whole-genome comparisons Vanessa Rodrigues Paixão-Côrtes, Lucas Henrique Viscardi, Francisco Mauro Salzano, Tábita Hünemeier and Maria Cátira Bortolini Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Abstract After a brief review of the most recent findings in the study of human evolution, an extensive comparison of the com- plete genomes of our nearest relative, the chimpanzee (Pan troglodytes), of extant Homo sapiens, archaic Homo neanderthalensis and the Denisova specimen were made. The focus was on non-synonymous mutations, which consequently had an impact on protein levels and these changes were classified according to degree of effect. A to- tal of 10,447 non-synonymous substitutions were found in which the derived allele is fixed or nearly fixed in humans as compared to chimpanzee. Their most frequent location was on chromosome 21. Their presence was then searched in the two archaic genomes. Mutations in 381 genes would imply radical amino acid changes, with a frac- tion of these related to olfaction and other important physiological processes. Eight new alleles were identified in the Neanderthal and/or Denisova genetic pools. Four others, possibly affecting cognition, occured both in the sapiens and two other archaic genomes. The selective sweep that gave rise to Homo sapiens could, therefore, have initiated before the modern/archaic human divergence.
    [Show full text]
  • Overexpression of Ubiquitin Specific Protease 44 (USP44) Induces Chromosomal Instability and Is Frequently Observed in Human T-Cell Leukemia
    Overexpression of Ubiquitin Specific Protease 44 (USP44) Induces Chromosomal Instability and Is Frequently Observed in Human T-Cell Leukemia Ying Zhang1,2, Jan van Deursen1,2, Paul J. Galardy1,2* 1 Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America, 2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America Abstract Cdc20-anaphase promoting complex/cyclosome (Cdc20-APC/C) E3 ubiquitin ligase activity is essential for orderly mitotic progression. The deubiqituinase USP44 was identified as a key regulator of APC/C and has been proposed to suppress Cdc20-APC/C activity by maintaining its association with the inhibitory protein Mad2 until all chromosomes are properly attached to the mitotic spindle. However, this notion has been challenged by data in which a lysine-less mutant of Cdc20 leads to premature anaphase, suggesting that it’s ubiquitination is not required for APC/C activation. To further evaluate its role in checkpoint function and chromosome instability, we studied the consequences of over-expression of mouse Usp44 in non-transformed murine embryonic fibroblasts. Here we show that cells with high Usp44 are prone to chromosome segregation errors and aneuploidization. We find that high Usp44 promotes association of Mad2 with Cdc20 and reinforces the mitotic checkpoint. Surprisingly, the APC/C-Cdc20 substrate cyclin B1 is stabilized in G2 when Usp44 is over-expressed, but is degraded with normal kinetics once cells enter mitosis. Furthermore, we show that USP44 expression is elevated in subset of T-cell leukemias. These data are consistent with an important role for USP44 in regulating Cdc20-APC/C activity and suggest that high levels of this enzyme may contribute to the pathogenesis of T-ALL.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0050728A1 Benvenisty Et Al
    US 2015.0050728A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0050728A1 Benvenisty et al. (43) Pub. Date: Feb. 19, 2015 (54) IDENTIFICATION OF NOVEL CELL (60) Provisional application No. 61/536,099, filed on Sep. SURFACE MARKERS FOR PANCREATC 19, 2011, provisional application No. 61/417.364, PROGENITOR CELLS AND DEFINITE filed on Nov. 26, 2010. ENDODERMAL CELLS Publication Classification (71) Applicants: Nissim Benvenisty, Jerusalem (IL); Joseph Itskovitz-Eldor, Haifa (IL); (51) Int. Cl. Bettina Fishman, Haifa (IL); Hanna CI2N5/071 (2006.01) Segev, Doar-Na Emek Hefer (IL); (52) U.S. Cl. Danny Kitsberg, Jerusalem (IL) CPC .................................... CI2N5/0678 (2013.01) USPC .......................................................... 435/325 (72) Inventors: Nissim Benvenisty, Jerusalem (IL); Joseph Itskovitz-Eldor, Haifa (IL); (57) ABSTRACT Bettina Fishman, Haifa (IL); Hanna Segev, Doar-Na Emek Hefer (IL); Methods of identifying, isolating and qualifying pancreatic Danny Kitsberg, Jerusalem (IL) progenitor cells and definite endodermal cells. An isolated population of pancreatic progenitor cells, including at least (21) Appl. No.: 14/528,837 75% of cells having a TROP-2+ and/or TROP-2+/GPR50+ expression pattern and an isolated population of definite (22) Filed: Oct. 30, 2014 endodermal cells, including at least 50% of cells having a SOX17+/SOX7+/GSC+/CER+/FOXA2+/CXCR4+f Related U.S. Application Data NANOG expression pattern. Nucleic acid constructs includ (63) Continuation of application No. 13/903,815, filed on ing a reporter protein under the transcriptional regulation of May 28, 2013, which is a continuation of application SOX17 regulatory sequence or of PDX1 regulatory sequence, No. PCT/IB2011/055283, filed on Nov.
    [Show full text]