THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 146 — 13 December 2004 Editor: Bo Reipurth (
[email protected]) Abstracts of recently accepted papers Observations and modeling of the inner disk region of T Tauri stars R.L. Akeson1, C.H. Walker2, K. Wood2, J.A. Eisner3, E. Scire4, B. Penprase4, D.R. Ciardi1, G.T. van Belle1, B. Whitney5, and J.E. Bjorkman6 1 Michelson Science Center, California Institute of Technology, MS 100-22,Pasadena, CA, 91125, USA 2 School of Physics and Astronomy, University of St. Andrews, North Haugh,St. Andrews, KY16 9AD, Scotland 3 Dept. of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA, 91125, USA 4 Department of Physics and Astronomy, Pomona College, Claremont, CA 91711, USA 5 Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA E-mail contact:
[email protected] We present observations of four T Tauri stars using long baseline infrared interferometry from the Palomar Testbed Interferometer. The target sources, T Tau N, SU Aur, RY Tau and DR Tau, are all known to be surrounded by dusty circumstellar disks. The observations directly trace the inner regions (<1 AU) of the disk and can be used to constrain the physical properties of this material. For three of the sources observed, the infrared emission is clearly resolved. We first use geometric models to characterize the emission region size, which ranges from 0.04 to 0.3 AU in radius. We then use Monte Carlo radiation transfer models of accretion disks to jointly model the spectral energy distribution and the interferometric observations with disk models including accretion and scattering.