Stat155 Game Theory Lecture 15: Evolutionary Game Theory Outline

Total Page:16

File Type:pdf, Size:1020Kb

Stat155 Game Theory Lecture 15: Evolutionary Game Theory Outline Outline for today Stat155 Game Theory Lecture 15: Evolutionary game theory Nash equilibria Criticisms of Nash equilibria Example: hawks and doves Peter Bartlett Evolutionarily stable strategies October 18, 2016 1 / 21 2 / 21 Multiplayer general-sum games Multiplayer general-sum games Notation Definition A k-person general-sum game is specified by k utility functions, A sequence x = (x∗,..., x∗) ∆S ∆S (called a strategy profile) 1 k ∈ 1 × · · · × k uj : S1 S2 Sk R. is a Nash equilibrium for utility functions u1,..., uk if, for each player × × · · · × → Player j can choose strategies s S . j 1,..., k , j ∈ j ∈ { } Simultaneously, each player chooses a strategy. max uj (xj , x∗ j ) = uj (xj∗, x∗ j ). xj ∆S − − Player j receives payoff uj (s1,..., sk ). ∈ j More generally, Player j can choose mixed strategies xj ∆S , and ∈ j If the players play these mixed strategies xj∗, nobody has an incentive receives payoff uj (x) = Es1 x1,...,sk xk uj (s1,..., sk ), where ∼ ∼ to unilaterally deviate: each player’s mixed strategy is a best response x = (x1,..., xk ). to the other players’ mixed strategies. 3 / 21 4 / 21 What’s wrong with Nash equilibria? Outline Will all players know everyone’s utilities? Maximizing expected utility does not (explicitly) model risk aversion. Will players maximize utility and completely ignore the impact on other players’ utilities? Nash equilibria How can the players find a Nash equilibrium? Criticisms of Nash equilibria How can the players agree on a Nash equilibrium to play? Example: hawks and doves Will players actually randomize? Evolutionarily stable strategies Alternative equilibrium concepts Correlated equilibrium Evolutionary stability Equilibria in perturbed games. 5 / 21 6 / 21 Hawks and Doves Chicken (Karlin and Peres, 2016) vocabulary.com 7 / 21 8 / 21 Hawks and Doves Hawks and Doves Expected utility Payoff Fix v = 2, c = 2. H D H (-1,-1) (2,0) D (0,2) (1,1) If your opponent plays Pr(H) = x, your expected utility is: 2 3x for H − 1 x for D − Let’s play it, against a random (previous) opponent. 9 / 21 10 / 21 Outline Evolutionarily stable strategies There is a population of individuals. Nash equilibria There is a game played between pairs of individuals. Criticisms of Nash equilibria Each individual has a pure strategy encoded in its genes. Example: hawks and doves The two players are randomly chosen individuals. Evolutionarily stable strategies A higher payoff gives higher reproductive success. This can push the population towards stable mixed strategies. 11 / 21 12 / 21 John Maynard Smith and George Price Hawks and Doves Expected utility © 1973 Nature Publishing Group Nature 13 / 21 14 / 21 Evolutionarily stable strategies Evolutionarily stable strategies Suppose that x is invaded by a small population of mutants z: x is replaced by (1 )x + z. − Will the mix x survive? Consider a two-player game with payoff matrices A, B. x’s utility: x>A (z + (1 )x) = x>Az + (1 )x>Ax Suppose that it is symmetric (A = B>). − − Consider a mixed strategy x. z’s utility: z>A (z + (1 )x) = z>Az + (1 )z>Ax − − Think of x as the proportion of each pure strategy in the population. Definition Mixed strategy x ∆ is an evolutionarily stable strategy (ESS) if, for any ∈ n pure strategy z, 1 z Ax x Ax (x, x) is a Nash equilibrium. > ≤ > ←− 2 If z>Ax = x>Ax then z>Az < x>Az. 15 / 21 16 / 21 Hawks and Doves Hawks and Doves Payoff Fix v = 2, c = 2. H D x = (1/2, 1/2) is a Nash equilibrium. H (-1,-1) (2,0) Is it an ESS? D (0,2) (1,1) Consider a mutant pure strategy z. We need 1 z>Ax x>Ax? True, because( x, x) is a Nash equilibrium. Expected utility ≤ 2 If z>Ax = x>Ax then z>Az < x>Az? For z = (1, 0) (that is, H), z Az = 1 < 1/2 = x Az. > − − > For z = (0, 1) (that is, D), z>Az = 1 < 3/2 = x>Az. So x is an ESS. 17 / 21 18 / 21 Rock-Paper-Scissors Uta Stansburiana: Rock-paper-scissors in nature Payoff R P S R 0 -1 1 P 1 0 -1 S -1 1 0 x = (1/3, 1/3, 1/3) is a Nash equilibrium. Is it an ESS? Consider a mutant pure strategy z. We need (Karlin and Peres, 2016) 1 z>Ax x>Ax? True, because( x, x) is a Nash equilibrium. ≤ Orange-throat (aggressive, large harems) 2 If z>Ax = x>Ax then z>Az < x>Az? defeats blue-throat (less aggressive, small harems) But for any pure strategy z, z Ax = 0 = z Az. > > defeats yellow-striped (submissive, look like females) So x is not an ESS. defeats orange-throat. Cycles can occur, with the population shifting between strategies. Six-year cycle of shifting population proportions. 19 / 21 20 / 21 Outline Nash equilibria Criticisms of Nash equilibria Example: hawks and doves Evolutionarily stable strategies 21 / 21.
Recommended publications
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • Evolutionary Stable Strategy Application of Nash Equilibrium in Biology
    GENERAL ARTICLE Evolutionary Stable Strategy Application of Nash Equilibrium in Biology Jayanti Ray-Mukherjee and Shomen Mukherjee Every behaviourally responsive animal (including us) make decisions. These can be simple behavioural decisions such as where to feed, what to feed, how long to feed, decisions related to finding, choosing and competing for mates, or simply maintaining ones territory. All these are conflict situations between competing individuals, hence can be best understood Jayanti Ray-Mukherjee is using a game theory approach. Using some examples of clas- a faculty member in the School of Liberal Studies sical games, we show how evolutionary game theory can help at Azim Premji University, understand behavioural decisions of animals. Game theory Bengaluru. Jayanti is an (along with its cousin, optimality theory) continues to provide experimental ecologist who a strong conceptual and theoretical framework to ecologists studies mechanisms of species coexistence among for understanding the mechanisms by which species coexist. plants. Her research interests also inlcude plant Most of you, at some point, might have seen two cats fighting. It invasion ecology and is often accompanied with the cats facing each other with puffed habitat restoration. up fur, arched back, ears back, tail twitching, with snarls, growls, Shomen Mukherjee is a and howls aimed at each other. But, if you notice closely, they faculty member in the often try to avoid physical contact, and spend most of their time School of Liberal Studies in the above-mentioned behavioural displays. Biologists refer to at Azim Premji University, this as a ‘limited war’ or conventional (ritualistic) strategy (not Bengaluru. He uses field experiments to study causing serious injury), as opposed to dangerous (escalated) animal behaviour and strategy (Figure 1) [1].
    [Show full text]
  • Game Theory]: Basics of Game Theory
    Artificial Intelligence Methods for Social Good M2-1 [Game Theory]: Basics of Game Theory 08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang [email protected] Wean Hall 4126 1 5/8/2018 Quiz 1: Recap: Optimization Problem Given coordinates of 푛 residential areas in a city (assuming 2-D plane), denoted as 푥1, … , 푥푛, the government wants to find a location that minimizes the sum of (Euclidean) distances to all residential areas to build a hospital. The optimization problem can be written as A: min |푥푖 − 푥| 푥 푖 B: min 푥푖 − 푥 푥 푖 2 2 C: min 푥푖 − 푥 푥 푖 D: none of above 2 Fei Fang 5/8/2018 From Games to Game Theory The study of mathematical models of conflict and cooperation between intelligent decision makers Used in economics, political science etc 3/72 Fei Fang 5/8/2018 Outline Basic Concepts in Games Basic Solution Concepts Compute Nash Equilibrium Compute Strong Stackelberg Equilibrium 4 Fei Fang 5/8/2018 Learning Objectives Understand the concept of Game, Player, Action, Strategy, Payoff, Expected utility, Best response Dominant Strategy, Maxmin Strategy, Minmax Strategy Nash Equilibrium Stackelberg Equilibrium, Strong Stackelberg Equilibrium Describe Minimax Theory Formulate the following problem as an optimization problem Find NE in zero-sum games (LP) Find SSE in two-player general-sum games (multiple LP and MILP) Know how to find the method/algorithm/solver/package you can use for solving the games Compute NE/SSE by hand or by calling a solver for small games 5 Fei Fang 5/8/2018 Let’s Play! Classical Games
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Banerjee, Abhijit; Weibull, Jörgen W. Working Paper Evolution and Rationality: Some Recent Game- Theoretic Results IUI Working Paper, No. 345 Provided in Cooperation with: Research Institute of Industrial Economics (IFN), Stockholm Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial Economics (IUI), Stockholm This Version is available at: http://hdl.handle.net/10419/95198 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ind ustriens Utred n i ngsi nstitut THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH A list of Working Papers on the last pages No.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Contemporaneous Perfect Epsilon-Equilibria
    Games and Economic Behavior 53 (2005) 126–140 www.elsevier.com/locate/geb Contemporaneous perfect epsilon-equilibria George J. Mailath a, Andrew Postlewaite a,∗, Larry Samuelson b a University of Pennsylvania b University of Wisconsin Received 8 January 2003 Available online 18 July 2005 Abstract We examine contemporaneous perfect ε-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within ε of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect ε-equilibrium. A strategy profile is a contemporaneous perfect ε-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria. 2005 Elsevier Inc. All rights reserved. JEL classification: C70; C72; C73 Keywords: Epsilon equilibrium; Ex ante payoff; Multistage game; Subgame perfect equilibrium 1. Introduction Analyzing a game begins with the construction of a model specifying the strategies of the players and the resulting payoffs. For many games, one cannot be positive that the specified payoffs are precisely correct. For the model to be useful, one must hope that its equilibria are close to those of the real game whenever the payoff misspecification is small. To ensure that an equilibrium of the model is close to a Nash equilibrium of every possible game with nearly the same payoffs, the appropriate solution concept in the model * Corresponding author. E-mail addresses: [email protected] (G.J. Mailath), [email protected] (A. Postlewaite), [email protected] (L.
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • The Computational Complexity of Evolutionarily Stable Strategies
    International Journal of Game Theory manuscript No. (will be inserted by the editor) The Computational Complexity of Evolutionarily Stable Strategies K. Etessami1, A. Lochbihler2 1 Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK, e-mail: [email protected] 2 Fakult¨at f¨ur Mathematik und Informatik, Universit¨at Passau, 94030 Passau, Germany, e-mail: [email protected] The date of receipt and acceptance will be inserted by the editor Abstract The concept of evolutionarily stable strategies (ESS) has been cen- tral to applications of game theory in evolutionary biology, and it has also had an influence on the modern development of game theory. A regular ESS is an im- portant refinement the ESS concept. Although there is a substantial literature on computing evolutionarily stable strategies, the precise computational complexity of determining the existence of an ESS in a symmetric two-player strategic form game has remained open, though it has been speculated that the problem is NP- hard. In this paper we show that determining the existence of an ESS is both NP- Σp hard and coNP-hard, and that the problem is contained in 2 , the second level of the polynomial time hierarchy. We also show that determining the existence of a regular ESS is indeed NP-complete. Our upper bounds also yield algorithms for computing a (regular) ESS, if one exists, with the same complexities. Key words computational complexity – game theory – evolutionarily stable stra- tegies – evolutionary biology – Nash equilibria 1 Introduction Game theoretic methods have been applied for a long time to study phenomena in evolutionary biology, most systematically since the pioneering work of May- nard Smith in the 1970’s and 80’s ([SP73,May82]).
    [Show full text]
  • Success Rates in Simplified Threshold Public Goods Games - a Theoretical Model
    Success rates in simplified threshold public goods games - a theoretical model by Christian Feige No. 70 | JUNE 2015 WORKING PAPER SERIES IN ECONOMICS KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association econpapers.wiwi.kit.edu Impressum Karlsruher Institut für Technologie (KIT) Fakultät für Wirtschaftswissenschaften Institut für Volkswirtschaftslehre (ECON) Schlossbezirk 12 76131 Karlsruhe KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Working Paper Series in Economics No. 70, June 2015 ISSN 2190-9806 econpapers.wiwi.kit.edu Success rates in simplied threshold public goods games a theoretical model Christian Feigea,¦ aKarlsruhe Institute of Technology (KIT), Institute of Economics (ECON), Neuer Zirkel 3, 76131 Karlsruhe, Germany Abstract This paper develops a theoretical model based on theories of equilibrium selection in order to predict success rates in threshold public goods games, i.e., the probability with which a group of players provides enough contri- bution in sum to exceed a predened threshold value. For this purpose, a prototypical version of a threshold public goods game is simplied to a 2 ¢ 2 normal-form game. The simplied game consists of only one focal pure strat- egy for positive contributions aiming at an ecient allocation of the threshold value. The game's second pure strategy, zero contributions, represents a safe choice for players who do not want to risk coordination failure. By calculat- ing the stability sets of these two pure strategies, success rates can be put in explicit relation to the game parameters. It is also argued that this approach has similarities with determining the relative size of the strategies' basins of attraction in a stochastic dynamical system (cf.
    [Show full text]
  • Monetary Policy Obeying the Taylor Principle Turns Prices Into Strategic Substitutes
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Cornand, Camille; Heinemann, Frank Working Paper Monetary Policy Obeying the Taylor Principle Turns Prices Into Strategic Substitutes Discussion Paper, No. 90 Provided in Cooperation with: University of Munich (LMU) and Humboldt University Berlin, Collaborative Research Center Transregio 190: Rationality and Competition Suggested Citation: Cornand, Camille; Heinemann, Frank (2018) : Monetary Policy Obeying the Taylor Principle Turns Prices Into Strategic Substitutes, Discussion Paper, No. 90, Ludwig- Maximilians-Universität München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 - Rationality and Competition, München und Berlin This Version is available at: http://hdl.handle.net/10419/185760 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
    [Show full text]
  • Problem Set #8 Solutions: Introduction to Game Theory
    Finance 30210 Solutions to Problem Set #8: Introduction to Game Theory 1) Consider the following version of the prisoners dilemma game (Player one’s payoffs are in bold): Player Two Cooperate Cheat Player One Cooperate $10 $10 $0 $12 Cheat $12 $0 $5 $5 a) What is each player’s dominant strategy? Explain the Nash equilibrium of the game. Start with player one: If player two chooses cooperate, player one should choose cheat ($12 versus $10) If player two chooses cheat, player one should also cheat ($0 versus $5). Therefore, the optimal strategy is to always cheat (for both players) this means that (cheat, cheat) is the only Nash equilibrium. b) Suppose that this game were played three times in a row. Is it possible for the cooperative equilibrium to occur? Explain. If this game is played multiple times, then we start at the end (the third playing of the game). At the last stage, this is like a one shot game (there is no future). Therefore, on the last day, the dominant strategy is for both players to cheat. However, if both parties know that the other will cheat on day three, then there is no reason to cooperate on day 2. However, if both cheat on day two, then there is no incentive to cooperate on day one. 2) Consider the familiar “Rock, Paper, Scissors” game. Two players indicate either “Rock”, “Paper”, or “Scissors” simultaneously. The winner is determined by Rock crushes scissors Paper covers rock Scissors cut paper Indicate a -1 if you lose and +1 if you win.
    [Show full text]
  • Navigating the Landscape of Multiplayer Games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M
    ARTICLE https://doi.org/10.1038/s41467-020-19244-4 OPEN Navigating the landscape of multiplayer games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M. Czarnecki2, Francisco C. Santos3, Mark Rowland2, Jerome Connor2, Daniel Hennes 1, Paul Muller1, Julien Pérolat1, Bart De Vylder1, Audrunas Gruslys2 & Rémi Munos1 Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better 1234567890():,; informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quanti- fying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games. 1 DeepMind, Paris, France. 2 DeepMind, London, UK. 3 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. 4These authors ✉ contributed equally: Shayegan Omidshafiei, Karl Tuyls. email: somidshafi[email protected] NATURE COMMUNICATIONS | (2020) 11:5603 | https://doi.org/10.1038/s41467-020-19244-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19244-4 ames have played a prominent role as platforms for the games.
    [Show full text]