The Phylogenetic Basis of Sexual Size Dimorphism in Orb-Weaving Spiders (Araneae, Orbiculariae)

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogenetic Basis of Sexual Size Dimorphism in Orb-Weaving Spiders (Araneae, Orbiculariae) Syst. Biol. 49(3):435–462, 2000 The Phylogenetic Basis of Sexual Size Dimorphism in Orb-Weaving Spiders (Araneae, Orbiculariae) GUSTAVO HORMIGA,1,2 NIKOLAJ SCHARFF,3 AND JONATHAN A. CODDINGTON2 1 Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA; E-mail: [email protected] (address for correspondence) 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, USA 3 Department of Entomology, Zoological Museum, University of Copenhagen, Copenhagen, DK 2100, Denmark Abstract.—Extreme sexual body size dimorphism (SSD), in which males are only a small fraction of the size of the females, occurs only in a few, mostly marine, taxonomic groups. Spiders are the only terrestrial group in which small males are relatively common, particularly among orb-weavers (especially in the families Tetragnathidae and Araneidae) and crab spiders (Thomisidae). We used a taxonomic sample of 80 genera to study the phylogenetic patterns (origins and reversals) of SSD in orb-weaving spiders (Orbiculariae). We collected and compiled male and female size data (adult body length) for 536 species. Size data were treated as a continuous character, and ancestral sizes, for males and females separately, were reconstructed by using Wagner parsimony on a cladogram for the 80 genera used in this study. Of these 80 genera, 24 were female-biased dimorphic (twice or more the body length of the male); the remaining 56 genera were monomorphic. Under parsimony only four independent origins of dimorphism are required: in the theridiid genus Tidarren, in the distal nephilines, in the “argiopoid clade,” and in the araneid genus Kaira. Dimorphism has reversed to monomorphism at least seven times, all of them within the large “argiopoid clade.” The four independent origins of dimorphism represent two separate instances of an increase in female size coupled with a decrease of male size (involving only two genera), and two separate instances of an increase in female size with male size either remaining the same or increasing, but not as much as females (involving 30 genera). In orb-weaving spiders, far more taxa are sexually dimorphic as a result of female size increase (22 genera) than as a result of male size decrease (two genera). SSD in orb-weaving spiders encompasses several independent evolutionary histories that together suggest a variety of evolutionary pathways. This multiplicity strongly refutes all efforts thus far to nd a general explanation for either the origin or maintenance (or both) of SSD, because the different pathways very likely will require distinctly different, possibly unique, explanations. Each pattern must be understood historically before its origin and maintenance can be explained in ecological and evolutionary terms. The most frequently cited example of male dwarsm in spiders, the golden orb-weaving spider genus Nephila (Tetragnathidae), is in fact a case of female giantism, not male dwarsm. [Araneae; continuous characters; Orbiculariae; parsimony; sexual size dimorphism; spiders.] Sexual size dimorphism (SSD) is a clas- be >12 times that of the adult males (e.g., sic problem in evolutionary biology, empha- in Nephila pilipes; Robinson and Robinson, sized by Darwin (1871) and addressed by 1973). Extreme sexual body size dimorphism many subsequent authors (see references in is most common among orb-weavers (es- Ghiselin, 1974; Shine, 1989; Hanken and pecially in the families Tetragnathidae and Wake, 1993; Andersson, 1994). Extreme sex- Araneidae) and crab spiders (Thomisidae) ual body size dimorphism, in which males but the phenomenon does not respect taxo- are only a small fraction of the size of the nomic boundaries; other cases can be found females, occurs in only a few, mostly ma- in very disparate spider taxa, including my- rine, taxonomic groups. Bonelliids (Echiura, galomorphs (Main, 1990). Bonelliidae), some barnacles (Cirripedia), Extreme SSD in spiders (by convention, and ceratioid angler shes (Lophiiformes, females at least twice the male size) has several families within Ceratioidea) provide usually been interpreted as male dwarsm classic examples of male miniaturization. (Elgar et al., 1990; Elgar, 1991; Main, 1990; Spiders are the only terrestrial group in Vollrath and Parker, 1992), although alter- which small males are relatively common. In native explanations have been proposed most species of spiders the females are larger (Simon, 1892:753; Gerhardt, 1924) and the than the males. In some cases this dispar- male dwarsm interpretation has recently ity is extreme (Fig. 1), as in the often-cited been disputed (Head, 1995; Hormiga et al., orb-weaving genus Nephila (Tetragnathidae), 1995; Coddington et al., 1997; Scharff and in which the body length of females may Coddington, 1997; Prenter et al., 1997, 1998). 435 436 S YS TE M ATI C BIOLOG Y FIGURE 1. Extreme sexual size dimorphism in orb-weaving spiders. (a) Male (top) and female Nephila clavipes (Tetragnathidae). (b) Male (right) and female Argiope bruennichi (Araneidae). VOL. 49 2000 HORMIGA ET AL.—SEXUAL SIZE DIMORPHISM IN ORB-WEAVING SPIDERS 437 In phylogenetic terms, male dwarsm is, by larians comprise two sister clades ranked as denition, an apomorphic decrease in male superfamilies: the species-poor Deinopoidea size. Although the selective agents that bi- ( 300 species in two families) and the large ologists have invoked to explain this phe- Araneoide» a (some 10,000 species in 12 fami- nomenon vary, male dwarsm hypotheses lies). SSD has been reported in 3 of the 14 or- are alike in focusing only on size change in bicularian families (all of them within Ara- males, despite the obvious fact that SSD is neoidea): Araneidae, Tetragnathidae, and the ratio in size of both sexes. Evolutionarily Theridiidae. Our taxonomic sample includes speaking, changes in either sex can produce 79 genera from nine orbicularian families “dimorphism” and therefore identical size and the outgroup genus Dictyna (80 genera ratios may originate in different ways. Tabu- in total). The araneoid families Cyatholip- lating only body size ratios, without track- idae, Synotaxidae, Anapidae, Symphytog- ing which sex changed and how (increase nathidae, and Mysmenidae were not in- or decrease), may conate different biolog- cluded in our taxonomic sample because ical phenomena that require different expla- all known members are monomorphic and nations. The hypothesis that the SSD of a because representatives of the subclades to particular taxon is due to male dwarsm im- which they belong (the “Spineless femur plies that male size has decreased over evo- clade” and the “Symphytognathoid clade”; lutionary time. This prediction can be tested see Griswold et al., 1998) were included in cladistically by reconstructing the phyloge- the study. The families Araneidae and Tetrag- netic history of size changes in each sex sep- nathidae have been more densely sampled arately, which in turn allows the reconstruc- (57 and 14 genera included, respectively), be- tion of ancestral size ratios under parsimony. cause it is within these two lineages that the Cladistic methods are especially useful be- majority of cases of SSD among orb-weavers cause they can disentangle the contribution can be found and because cladistic analy- of many factors to evolutionary pattern by ses of these two groups are available. Even viewing them in a historical context (Nylin though this is the most comprehensive phy- and Wedell, 1994) and thus clarify the inde- logenetically based analysis of SSD in spi- pendence, distinctiveness, and sequence of ders thus far, the taxonomic sample available evolutionary events. has been constrained to a large extent by the In this paper we use a taxonomic sample available phylogenetic hypotheses. of 80 genera to study the phylogenetic basis The tree topology relating the 80 genera of SSD in orb-weaving spiders (Orbiculariae) used in this study (Fig. 2) is a composite and address the following questions. First, is cladogram that has been derived from three there a common origin ofSSD in orb-weaving of our own quantitative cladistic analy- spiders? Second, if that is not the case, as the ses of araneoid spiders using the logic of taxonomic distribution alone seems to sug- “supertree” techniques (Sanderson et al., gest, how many independent origins of SSD 1998). These three primary sources are have to be hypothesized under parsimony matrix-based cladistic parsimony analyses to explain its current taxonomic distribution? of morphological and behavioral characters Does SSD reverse to monomorphism? How and should be consulted for detailed infor- and where did these differences in size arise mation on phylogenetic relationships, tree during the diversication of orb-weavers? Is choice, and cladistic support. The interfa- each instance of SSD the result of changes in milial and theridioid relationships are from male size, female size, or a combination of Griswold et al. (1998). The original matrix of both? Griswold et al. has 31 taxa scored for 93 char- acters; the parsimony analysis of this data set produces a single minimal-length tree of MATERIALS AND METHODS 170 steps (CI = 0.64, RI = 0.81). Tetragnathid The orb-weaving spiders (Orbiculariae) in- relationships follow Hormiga et al. (1995). clude 14 families and >1000 genera. More The original tetragnathid dataset has 22 taxa than 10,000 species of orbicularians have scored for 60 characters and the parsimony been described so far, accounting for ap- analysis results in three minimal length trees proximately one-third of all described spi- of 130 steps (CI = 0.56, RI = 0.72) that differ ders (Coddington and Levi, 1991). Orbicu- only in the relationships among the outgroup 438 SYSTEMATIC BIOLOGY VOL. 49 FIGURE 2. Cladogram for a taxonomic sample of orb-weaving families and genera of the spider families Tetrag- nathidae and Araneidae (Hormiga et al., 1995; Scharff and Coddington, 1997; Griswold et al., 1998), plus their outgroups. taxa. Hormiga et al. (1995) preferred one of (1997) analysis of 70 taxa and 82 charac- these three most-parsimonious cladograms ters, which results in 16 slightly different (their Fig.
Recommended publications
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Proceedings of the Ctfs-Aa International Field Biology Course 2005
    ^^^Sij**jiit o PROCEEDINGS OF THE CTFS-AA INTERNATIONAL FIELD BIOLOGY COURSE 2005 KHAO CHONG, THAILAND 15 June-14 July 2005 Edited by Rhett D. Harrison Center for Tropical Forest Science - Arnold Arboretum Asia Program National Parks, Wildlife and Plant Conservation Department, Thailand Preface Preface The CTFS-AA International Field Biology Course is an annual, graduate-level field course in tropical forest biology run by the Center for Tropical Forest Science - Arnold Arboretum Asia Program (CTFS- AA; www.ctfs-aa.org) in collaboration with institutional partners in South and Southeast Asia. The CTFS-AA International Field Biology Course 2005 was held at Khao Chong Wildlife Extension and Conservation Center, Thailand from 15 June to 14 July and hosted by the National Parks, Wildlife and Plant Conservation Department, Thailand. It was the fifth such course organised by CTFS-AA. Last year's the course was held at Lambir Hills National Park, Sarawak and in 2001 and 2003 the courses were held at Pasoh Forest Reserve, Peninsular Malaysia. The next year's course will be announced soon The aim of these courses is to provide high level training in the biology of forests in South and Southeast Asia. The courses are aimed at upper-level undergraduate and graduate students from the region, who are at the start of their thesis research or professional careers in forest biology. During the course topics in forest biology are taught by a wide range of experts in tropical forest science. There is a strong emphasis on the development of independent research projects during the course. Students are also exposed to different ecosystem types, as well as forest related industries, through course excursions.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]
  • Araneae: Sparassidae)
    EUROPEAN ARACHNOLOGY 2003 (LOGUNOV D.V. & PENNEY D. eds.), pp. 107125. © ARTHROPODA SELECTA (Special Issue No.1, 2004). ISSN 0136-006X (Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 49 August 2003) A study of the character palpal claw in the spider subfamily Heteropodinae (Araneae: Sparassidae) Èçó÷åíèå ïðèçíàêà êîãîòü ïàëüïû ó ïàóêîâ ïîäñåìåéñòâà Heteropodinae (Araneae: Sparassidae) P. J ÄGER Forschungsinstitut Senckenberg, Senckenberganlage 25, D60325 Frankfurt am Main, Germany. email: [email protected] ABSTRACT. The palpal claw is evaluated as a taxonomic character for 42 species of the spider family Sparassidae and investigated in 48 other spider families for comparative purposes. A pectinate claw appears to be synapomorphic for all Araneae. Elongated teeth and the egg-sac carrying behaviour of the Heteropodinae seem to represent a synapomorphy for this subfamily, thus results of former systematic analyses are supported. One of the Heteropodinae genera, Sinopoda, displays variable character states. According to ontogenetic patterns, shorter palpal claw teeth and the absence of egg-sac carrying behaviour may be secondarily reduced within this genus. Based on the idea of evolutionary efficiency, a functional correlation between the morphological character (elongated palpal claw teeth) and egg-sac carrying behaviour is hypothesized. The palpal claw with its sub-characters is considered to be of high analytical systematic significance, but may also give important hints for taxonomy and phylogenetics. Results from a zoogeographical approach suggest that the sister-groups of Heteropodinae lineages are to be found in Madagascar and east Africa and that Heteropodinae, as defined in the present sense, represents a polyphyletic group.
    [Show full text]
  • Development and Growth in Synanthropic Species: Plasticity and Constraints
    Naturwissenschaften DOI 10.1007/s00114-014-1194-y ORIGINAL PAPER Development and growth in synanthropic species: plasticity and constraints Simona Kralj-Fišer & Tatjana Čelik & TjašaLokovšek & Klavdija Šuen & Rebeka Šiling & Matjaž Kuntner Received: 2 April 2014 /Revised: 25 May 2014 /Accepted: 26 May 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Urbanization poses serious extinction risks, yet had the smallest adults, but MF (♀=300, ♂=240 days) and some species thrive in urban environments. This may be due HF (♀=240, ♂=210 days) spiders reached comparable adult to a pronounced developmental plasticity in these taxa, since sizes through shorter development. While males and females phenotypically, plastic organisms may better adjust to unpre- had comparable instar numbers, females had longer develop- dictable urban food resources. We studied phenotypic plastic- ment, higher growth ratios, adult sizes and mass; and while ity in Nuctenea umbratica, a common European forest and males adjusted their moulting to food availability, female urban vegetation spider. We subjected spiderlings to low (LF), moulting depended on specific mass, not food treatment. We medium (MF) and high (HF) food treatments and documented discussed the patterns of Nuctenea sex-specific development their growth and developmental trajectories into adulthood. and compared our results with published data on two other Spiders from the three treatments had comparable numbers of Holarctic urban colonizers (Larinioides sclopetarius, Zygiella instars and growth ratios, but differed in developmental pe- x-notata) exhibiting high plasticity and fast generation turn- riods. Longest developing LF spiders (♀=390, ♂=320 days) over. We conclude that despite relatively unconstrained devel- opmental time in the laboratory enabling Nuctenea to achieve Communicated by: Sven Thatje maximal mass and size—main female fitness proxies—their S.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • 254 the JOURNAL of ARACHNOLOG Y SYSTEMATIZED SUBJECT INDEX Acari Chelicerate Arterial System and Endosternite–Firstman, 1 :1-5
    254 THE JOURNAL OF ARACHNOLOG Y SYSTEMATIZED SUBJECT INDEX Acari Chelicerate arterial system and endosternite–Firstman, 1 :1-54 Circulatory system of ticks–Obenchain and Oliver, 3 :57-7 4 Amblypygida Chelicerate arterial system and endosternite–Firstman, 1 :1-54 Araneae Chelicerate arterial system and endosternite–Firstman, 1 :1-5 4 New Philodromus from Arizona–Buckle, 1 :142-14 3 Egg cocoon of Linyphia marginata–Wise, 1 :143-144 Spider family Leptonetidae in North America–Gertsch, 1 :145-20 3 Spiders of Nacogdoches, Texas–Brown, 1 :229-24 0 Effects of d-amphetamine and diazepam on spider webs–Jackson, 2 :37-4 1 Names of higher taxa in spiders–Kaston, 2 :47-5 1 Rearing methods for spiders–Jackson, 2 :53-5 6 Feeding on eggs by Achaearanea tepidariorum–Valerio, 2 :57-6 3 Northern and southern Phidippus audax–Taylor and Peck, 2 :89-99 Dispersal of jumping spiders–Horner, 2 :101-10 5 Stabilimenta and barrier webs of Argiope argentata–Lubin, 2 :119-12 6 Genus Ozyptila in North America-Dondale and Redner, 2 :129-18 1 Revision of Coriarachne for North America–Bowling and Sauer, 2 :183-19 3 Key and checklist of Theridiidae–Levi and Randolph, 3 :31-5 1 Comments on Saltonia incerta– Roth and Brown, 3 :53-5 6 Web-site tenacity of Argiope–Enders, 3 :75-8 2 Ecology of Cyclocosmia truncata–Hunt, 3 :83-8 6 Spiders and scorpions from Arizona and Utah–Allred and Gertsch, 3 :87-9 9 Pitfall trapping of wandering spiders–Uetz and Unzicker, 3 :101-11 1 Male of Gnaphosa sonora–Platnick, 3 :134-13 5 Los generos Cyllodania y Arachnomura–Galiano, 3 :137-15 0
    [Show full text]
  • The Newport Forest Bulletin Jl25/18 Citizen Science & Monitoring Nature
    # 1120 The Newport Forest Bulletin Jl25/18 Citizen Science & Monitoring Nature Date and time: Wednesday July 25 2018 2:15 - 5:45 pm. Weather: Pr 35 mm; RH 74%; BP 101.3 kPa; sun/cloud; N 10 kmh; T 26º C Contents: More insects, with the help of two budding entomologists. Standing in The “Hole”: Layla Amer (left) with sister Sarah (right), Sarah’s son Noah and his friend Mahmoud. Noah has his collecting jar and Mahmoud has one of our nets. I brought an entourage with me to the property today: Sarah and Layla came with Sarah’s son Noah and his friend Mahmoud. Although Noah has only recently switched allegiance from dinosaurs to insects, his older friend Mahmoud has been at it for some time. He even maintains a “Bug Book” in which he writes down all the “bugs” he finds. After parking by the Nook and unloading, I was delighted to find 35 mm of precipitation in the rain gauge. As for temperature, a balmy 26º C. To make a long story short, I managed five sweeps today, the last two carried out by our assistant Layla. I suspect that readers are beginning to find my interminable descriptions of bag contents tiresome. The good stuff is all listed below, in any case. After my first sweep in the vegetation along the edge of the Gallery Forest, I took everybody to the River Landing where I did a second sweep among the giant Cup Plants and other plants in bloom. These seem to bring the most insects and spiders.
    [Show full text]
  • Special Publications Special
    ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS WITH WET PLAYAS ARACHNIDS ASSOCIATED SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 2008 ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS (LLANO ESTACADO), C okendolpher et al. U.S.A. JAMES C. COKENDOLPHER, SHANNON M. TORRENCE, JAMES T. ANDERSON, W. DAVID SISSOM, NADINE DUPÉRRÉ, JAMES D. RAY & LOREN M. SMITH SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A. JAMES C. COKENDOLPHER , SHANNON M. TORREN C E , JAMES T. ANDERSON , W. DAVID SISSOM , NADINE DUPÉRRÉ , JAMES D. RAY , AND LOREN M. SMI T H Texas Tech University, Oklahoma State University, B&W Pantex, Texas Parks and Wildlife Department, West Texas A&M University, West Virginia University Layout and Design: Lisa Bradley Cover Design: James C. Cokendolpher et al. Copyright 2008, Museum of Texas Tech University All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 10 April 2008 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 54 Series Editor: Robert J. Baker Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A.
    [Show full text]