Hourly Analyses of the Large Storms and Atmospheric Rivers That Provide Most of California’S Precipitation in Only 10 to 100 Hours Per Year Maryam A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016). -
A Policy Response to the Water Supply and Flood Control in Changing Climate
Capstone Project A Policy Response to the Water Supply and Flood Control in Changing Climate Nataliia Zadorkina Scripps Institution of Oceanography University of California San Diego June, 2016 1 Table of Contents: Executive Summary……………………………………………………………………… 3 Policy Brief………………………………………………………………………………. 5 References………………………………………………………………………………… 16 Appendix…………………………………………………………………………………. 19 2 EXECUTIVE SUMMARY CAPSTONE SUBJECT: The Policy Response to Water Supply and Flood Control in Changing Climate CAPSTONE DELIVERABLE: Policy Brief “Recommendations on executive actions on the water supply and flood control” AUDIENCE: California Department of Water Resources ALIGNMENT WITH CLIMATE SCEINCE & POLICY: climate science – the link between climate change and extreme weather events, the role of atmospheric rivers in water supply and flood control; policy – recommendations on supporting scientific research targeting fulfilling informational gaps which will foster more reliable weather forecasting with an ultimate goal to be prepared for uncertainties associated with climate change effect on water availability and, subsequently, on reservoir operations. APPLICATION: The project has a direct effect on policy associated with climate change adaptation. The findings to be presented on the North Coast Regional Water Quality Control Board (RWQCB) meeting on June 16, 2016 in Santa Rosa, CA as well as on the Sonoma County Grape Growers board meeting in Petaluma, CA. In hindsight, what used to be a highly polarized topic within the scientific community, the consensus behind man-made climate change has become increasingly uniform. In 2014, the Intergovernmental Panel on Climate Change (IPCC) released a ‘Fifth Assessment’ report citing “unequivocal” evidence of rising average air and ocean temperatures (Graphic 1). Graphic 1: Temperature and Precipitation at Santa Rosa, CA, from 1890 to 2014 (Data source: National Climatic Data Center, NOAA). -
Extreme Weather Events
Extreme weather events Introduction The further a particular weather event lies from the typical range of that type of event, the more it is likely to be described as an extreme event, irrespective of whether it concerns a violent storm, unusual temperatures, heavy precipitation, drought or flood. 2012 seems to have been a year of extreme weather events (‘superstorm’ Sandy in the USA, high rainfall and floods in the UK, etc.). Other years in the last decade have also contained droughts and wildfires (in the USA and Australia), hurricane Katrina (USA), floods (Pakistan) and heat waves (Russia and France). At the same time it is becoming increasingly accepted that human activity, principally the burning of fossil fuels, is changing the global climate and causing the atmosphere to warm. The average global temperature of the lowermost atmosphere has increased markedly since about 1980. Are the two observations, which operate on different timescales1, connected? Are extreme weather events really becoming more common and/or more severe, or are they perhaps part of the climate’s natural variability? The aim of this document is to investigate these two questions. Some basic physics of a warmer atmosphere As air warms its humidity is able to rise and so the atmosphere carries more water vapour. For example, the water content of the atmosphere increases by 7% for each degree Centigrade rise in temperature, although globally precipitation is expected to rise by only about 2%/°C because relative humidity is typically not expected to change on the global scale.8 1 climate change is defined as changes occurring at least over a few decades whereas extreme weather typically lasts from days to months. -
Bear Creek Watershed Assessment Report
BEAR CREEK WATERSHED ASSESSMENT PLACER COUNTY, CALIFORNIA Prepared for: Prepared by: PO Box 8568 Truckee, California 96162 February 16, 2018 And Dr. Susan Lindstrom, PhD BEAR CREEK WATERSHED ASSESSMENT – PLACER COUNTY – CALIFORNIA February 16, 2018 A REPORT PREPARED FOR: Truckee River Watershed Council PO Box 8568 Truckee, California 96161 (530) 550-8760 www.truckeeriverwc.org by Brian Hastings Balance Hydrologics Geomorphologist Matt Wacker HT Harvey and Associates Restoration Ecologist Reviewed by: David Shaw Balance Hydrologics Principal Hydrologist © 2018 Balance Hydrologics, Inc. Project Assignment: 217121 800 Bancroft Way, Suite 101 ~ Berkeley, California 94710-2251 ~ (510) 704-1000 ~ [email protected] Balance Hydrologics, Inc. i BEAR CREEK WATERSHED ASSESSMENT – PLACER COUNTY – CALIFORNIA < This page intentionally left blank > ii Balance Hydrologics, Inc. BEAR CREEK WATERSHED ASSESSMENT – PLACER COUNTY – CALIFORNIA TABLE OF CONTENTS 1 INTRODUCTION 1 1.1 Project Goals and Objectives 1 1.2 Structure of This Report 4 1.3 Acknowledgments 4 1.4 Work Conducted 5 2 BACKGROUND 6 2.1 Truckee River Total Maximum Daily Load (TMDL) 6 2.2 Water Resource Regulations Specific to Bear Creek 7 3 WATERSHED SETTING 9 3.1 Watershed Geology 13 3.1.1 Bedrock Geology and Structure 17 3.1.2 Glaciation 18 3.2 Hydrologic Soil Groups 19 3.3 Hydrology and Climate 24 3.3.1 Hydrology 24 3.3.2 Climate 24 3.3.3 Climate Variability: Wet and Dry Periods 24 3.3.4 Climate Change 33 3.4 Bear Creek Water Quality 33 3.4.1 Review of Available Water Quality Data 33 3.5 Sediment Transport 39 3.6 Biological Resources 40 3.6.1 Land Cover and Vegetation Communities 40 3.6.2 Invasive Species 53 3.6.3 Wildfire 53 3.6.4 General Wildlife 57 3.6.5 Special-Status Species 59 3.7 Disturbance History 74 3.7.1 Livestock Grazing 74 3.7.2 Logging 74 3.7.3 Roads and Ski Area Development 76 4 WATERSHED CONDITION 81 4.1 Stream, Riparian, and Meadow Corridor Assessment 81 Balance Hydrologics, Inc. -
Atmospheric Rivers: Harbors for Extreme Winter Precipitation by Zack Guido
3 | Feature Article Atmospheric Rivers: Harbors for Extreme Winter Precipitation By Zack Guido ierce winds loaded with moisture Fblasted into the Southwest on Decem- ber 18, 2010, dumping record-setting rain and snow from Southern California to southern Colorado. Fourteen inches of rain drenched St. George, Utah, over six days, while 6 inches soaked parts of northwest Arizona in a torrent that sin- gle-handedly postponed drought. Behind this wet weather was a phe- nomenon called atmospheric rivers, a Figure 1. A satellite image of an atmospheric river striking the Pacific Northwest on term first coined in 1998. ARs, as they November 7, 2006. This event produced about 25 inches of rain in three days. Warm are known to scientists, often deliver colors in the image represent moist air and cool colors denote dry air. The horizontal extreme precipitation, mostly to the band of red and purple at the bottom of the image is the Intertropical Convergence West Coast, but sometimes inland as Zone (ITCZ), a normally moist area that some of the strongest ARs can tap into, as well, prompting researchers to probe how happened in this case. Photo credit: Marty Ralph. they form and the effects they have in a changing climate. They are products of an unevenly heated through March is the peak season for Earth and form during winter, when the ARs that drench Southern California. ARs have caused nearly all of the largest temperature difference between the trop- floods on record in California, account- ics and the poles is greatest. The most intense ARs can transport an ing for most of the $400 million the state amount of water vapor equal to the flow spends each year to repair flood damage. -
Atmospheric Rivers
Atmospheric Rivers What is an Atmospheric River? Atmospheric rivers are relatively narrow regions in the atmosphere that are responsible for most of the transport of water vapor from the tropics. Atmospheric rivers come in all shapes and sizes but those that contain the largest amounts of water vapor and strongest winds are responsible for extreme rainfall events and floods. This type of hydrologic event can affect the entire west coast of North America. These extreme events can disrupt travel, induce mudslides, and cause damage to life and property. Not all atmospheric rivers are disruptive. Many are weak and provide beneficial rain or high elevation snow that is crucial to the water supply. The image on the left shows an atmospheric river that affected South- east Alaska on 11-08-2014. The atmospheric river is marked by the narrow plume of subtropical moisture evident in the Total Precipitable Water field extending from the central Pacific northeastward through the Gulf of Alaska. Why do Atmospheric Rivers Occur in SE Alaska? Due to its location on the western side of the North American continent, SE Alaska is often the target for powerful ocean storms that form over the western and central Pacific Ocean and move eastward, steered by the prevailing westerly upper level jet stream. These powerful low pressure systems often have strong fronts associated with them. Fronts act like a conduit to channel warm, moist air northward and eastward ahead of the low pressure system in what is called the “warm conveyor belt”. The strongest fronts are also regions of strong winds in the lower portions of the atmosphere. -
A Case Study of Four Atmospheric River Events Over the Pacific West Coast of the United States Isaac Arseneau1, Dr
A Case Study of Four Atmospheric River Events Over the Pacific West Coast of the United States Isaac Arseneau1, Dr. Wendell Nuss2 1Valparaiso University OCE 1659628 Abstract 2Naval Postgraduate School Atmospheric Rivers (AR) are moisture phenomena related to cyclones which bring moisture and large amounts of precipitation to areas of enhanced elevation along coastal areas. These events bring much of the rain received by the state of California, and the past winter many AR events brought much-needed rain to the region. Four different events from the 2016 fall through 2017 spring seasons are examined to better identify the relative roles of long-range moisture transport versus local moisture fluxes in AR events. Cross-sections of areas and times of interest during each event are generated, along with trajectory analyses of each event which will aid in determining the origin of the moisture being moved over land. Both the cross-sections and the trajectory analysis are taken from the CFSR (Climate Forecast System Reanalysis) model. It is expected that the results of these processes will support the findings of Dacre et al. (2015), which show that the moisture anomaly present during AR events is not actually due to moisture transport directly along the AR itself. Rather, the AR is the result of moisture convergence due to a combination of the warm conveyor belt forcing the ascent of moisture over the warm front and the trailing cold front forcing ascent as it closes the gap between itself and the warm front. The importance of this research is first and foremost evident in the California region, as water conservation in naturally dry areas is extremely important to the ever-expanding cities and communities present there and October 13, 2016 January 17, 2016 February 7, 2016 April 5, 2016 require long-term planning. -
Inland Impacts of Atmospheric River and Tropical Cyclone Extremes on Nitrate Transport and Stable Isotope Measurements
Environmental Earth Sciences (2019) 78:36 https://doi.org/10.1007/s12665-018-8018-x THEMATIC ISSUE Inland impacts of atmospheric river and tropical cyclone extremes on nitrate transport and stable isotope measurements A. Husic1 · J. Fox2 · E. Adams2 · J. Backus3 · E. Pollock4 · W. Ford5 · C. Agouridis5 Received: 30 June 2018 / Accepted: 19 December 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Atmospheric rivers and tropical cyclones originate in the tropics and can transport high rainfall amounts to inland temper- − ate regions. The purpose of this study was to investigate the response of nitrate (NO3 ) pathways, concentration peaks, and 15 18 2 18 13 stable isotope (δ NNO3, δ ONO3, δ HH2O, δ OH2O, and δ CDIC) measurements to these extreme events. A tropical cyclone and atmospheric river produced the number one and four ranked events in 2017, respectively, at a Kentucky USA watershed characterized by mature karst topography. Hydrologic responses from the two events were different due to rainfall character- istics with the tropical cyclone producing a steeper rising limb of the spring hydrograph and greater runoff generation to the 2 18 surface stream compared to the atmospheric river. Local minima and maxima of specific conductance, δ HH2O, δ OH2O, and 13 − 15 18 δ CDIC coincided with hydrograph peaks for both events. Minima and maxima of NO 3 , δ NNO3, δ ONO3, and temperature lagged behind the hydrograph peak for both events, and the values continued to be impacted by diffuse recharge during − hydrograph recession. Quick-flow pathways accounted for less than 20% of the total NO3 yield, while intermediate (30%) and slow-flow (50%) pathways composed the remaining load. -
Increasing Precipitation Volatility in Twenty-First-Century California
ARTICLES https://doi.org/10.1038/s41558-018-0140-y Increasing precipitation volatility in twenty-first- century California Daniel L. Swain 1,2*, Baird Langenbrunner3,4, J. David Neelin3 and Alex Hall3 Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California’s rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016–2017 winter pro- vides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California’s ‘Great Flood of 1862’. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is pro- jected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California’s existing water storage, conveyance and flood control infrastructure. editerranean climate regimes are renowned for their dis- however, has suggested an increased likelihood of wet years20–23 tinctively dry summers and relatively wet winters—a glob- and subsequent flood risk9,24 in California—which is consistent ally unusual combination1. Such climates generally occur with broader theoretical and model-based findings regarding the M 25 near the poleward fringe of descending air in the subtropics, where tendency towards increasing precipitation intensity in a warmer semi-permanent high-pressure systems bring stable conditions dur- (and therefore moister) atmosphere26,27. -
Floods, Droughts, and Lawsuits: a Brief History of California Water Policy
1Floods, Droughts, and Lawsuits: A Brief History of California Water Policy MPI/GETTY IMAGES The history of California in the twentieth century is the story of a state inventing itself with water. William L. Kahrl, Water and Power, 1982 California’s water system might have been invented by a Soviet bureaucrat on an LSD trip. Peter Passell, “Economic Scene: Greening California,” New York Times, 1991 California has always faced water management challenges and always will. The state’s arid and semiarid climate, its ambitious and evolving economy, and its continually growing population have combined to make shortages and conflicting demands the norm. Over the past two centuries, California has tried to adapt to these challenges through major changes in water manage- ment. Institutions, laws, and technologies are now radically different from those brought by early settlers coming to California from more humid parts of the United States. These adaptations, and the political, economic, technologic, and social changes that spurred them on, have both alleviated and exacerbated the current conflicts in water management. This chapter summarizes the forces and events that shaped water man- agement in California, leading to today’s complex array of policies, laws, and infrastructure. These legacies form the foundation of California’s contemporary water system and will both guide and constrain the state’s future water choices.1 1. Much of the description in this chapter is derived from Norris Hundley Jr.’s outstanding book, The Great Thirst: Californians and Water: A History (Hundley 2001), Robert Kelley’s seminal history of floods in the Central Valley, Battling the Inland Sea (Kelley 1989), and Donald Pisani’s influential study of the rise of irrigated agriculture in California, From the Family Farm to Agribusiness: The Irrigation Crusade in California (Pisani 1984). -
Atmospheric Rivers in CMIP5 Climate Ensembles Downscaled with a High Resolution Regional Climate Model
https://doi.org/10.5194/esd-2021-49 Preprint. Discussion started: 22 July 2021 c Author(s) 2021. CC BY 4.0 License. Atmospheric Rivers in CMIP5 climate ensembles downscaled with a high resolution regional climate model Matthias Gröger1, Christian Dieterich1, Cyril Dutheil1, H.E. Markus Meier1,2, Dmitry V. Sein3,4, 1Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research 5 Warnemünde, Rostock, 18119, Germany 2Research and Development Department, Swedish Meteorological and Hydrological Institute, Norrköping, 601 76, Sweden 3 Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow, Russia 4 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research; Bremerhaven, Germany 10 Correspondence to: Matthias Gröger ([email protected]) Abstract Atmospheric rivers (AR) are important drivers of heavy precipitation events in western and central 15 Europe and often associated with intense floods. So far, the ARs response to climate change in Europe has been investigated by global climate models within the CMIP5 framework. However, their spatial resolution between 1 and 3° is too coarse for an adequate assessment of local to regional precipitation patterns. Using a regional climate model with 0.22° resolution we downscale an ensemble of 24 global climate simulations following the greenhouse gas scenarios RCP2.6, RCP4.5, 20 RCP8.5. The performance of the model was tested against ER-I reanalysis data. The downscaled simulation notably better represents small-scale spatial characteristics which is most obvious over the terrain of the Iberian Peninsula where the AR induced precipitation pattern clearly reflect eat-west striking 25 topographical elements resulting in zonal bands of high and low AR impact. -
Ocean Fronts and Eddies Force Atmospheric Rivers and Heavy
ARTICLE https://doi.org/10.1038/s41467-021-21504-w OPEN Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America ✉ Xue Liu1,2,8, Xiaohui Ma 3,4,8 , Ping Chang 1,2,5, Yinglai Jia3, Dan Fu 1,2, Guangzhi Xu6, Lixin Wu 3,4, R. Saravanan1,5 & Christina M. Patricola 7 Atmospheric rivers (ARs) are responsible for over 90% of poleward water vapor transport in the mid-latitudes and can produce extreme precipitation when making landfall. However, 1234567890():,; weather and climate models still have difficulty simulating and predicting landfalling ARs and associated extreme precipitation, highlighting the need to better understand AR dynamics. Here, using high-resolution climate models and observations, we demonstrate that mesos- cale sea-surface temperature (SST) anomalies along the Kuroshio Extension can exert a remote influence on landfalling ARs and related heavy precipitation along the west coast of North America. Inclusion of mesoscale SST forcing in the simulations results in approximately a 40% increase in landfalling ARs and up to a 30% increase in heavy precipitation in mountainous regions and this remote impact occurs on two-week time scales. The asym- metrical response of the atmosphere to warm vs. cold mesoscale SSTs over the eddy-rich Kuroshio Extension region is proposed as a forcing mechanism that results in a net increase of moisture flux above the planetary boundary layer, prompting AR genesis via enhancing moisture transport into extratropical cyclones in the presence of mesoscale SST forcing. 1 International Laboratory for High-Resolution Earth System Prediction, Texas A&M University, College Station, TX, USA.