Bedrock Geologic Map of the El Paso Mountains in the Garlock and El Paso Peaks 7-1/2' Quadrangles, Kern County, California

Total Page:16

File Type:pdf, Size:1020Kb

Bedrock Geologic Map of the El Paso Mountains in the Garlock and El Paso Peaks 7-1/2' Quadrangles, Kern County, California U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2389 U.S. GEOLOGICAL SURVEY BEDROCK GEOLOGIC MAP OF THE EL PASO MOUNTAINS IN THE GARLOCK AND EL PASO PEAKS 7-1/2' QUADRANGLES, KERN COUNTY, CALIFORNIA By Michael D. Carr, Robert L. Christiansen, Forrest G. Poole, and John W. Goodge GEOLOGIC SETTING 1973; Carr and others, 1984) quartz diorite to quartz monzodiorite pluton, also unaffected by any ductile The El Paso Mountains are a range of mountain peaks deformation, intrudes the metasedimentary and met­ trending east-northeast along the north side of the avolcanic rocks in the easternmost El Paso Mountains. Garlock Fault, approximately 25 km southwest of the city of Ridgecrest in eastern Kern County, California. The stratigraphy and structure of the Paleozoic The south flank of the range is structurally controlled metasedimentary and metavolcanic marine strata in the by the left-lateral Garlock Fault and descends abruptly eastern part of the El Paso Mountains are the focus .into Fremont Valley, an alluvial basin with a closed of this study. Hess (1909) and Hulin (1925) briefly drainage system that terminates in Koehn Lake playa described these rocks, and Hess (1909, p. 30) reported (see fig. 1). Numerous surficial features that indicate two poorly preserved fossils from the eastern part of youthful activity along the left-lateral Garlock Fault are the metamorphic rock assemblage as probably no younger present along the south edge of the mountain range than Carboniferous in age. Dibblee (1952, 1967) (Clark, 1973). The north flank of the range slopes mapped the central part of the El Paso Mountains at more gently and is bordered by a tableland terrain a scale of 1:62,500 and formally divided the meta­ underlain by gently dipping Tertiary sedimentary and sedimentary and metavolcanic rocks into the now­ volcanic strata (Dibblee, 1952; Cox and Diggles, 1986). abandoned Mesquite Schist and the now-abandoned Numerous narrow canyons dissect these tablelands. Most Garlock Formation (see Carr and others, 1984). Dibblee of these canyons drain northward and westward into (1952) subdivided the Garlock Series (later renamed Indian Wells Valley, but several prominent drainages the Garlock Formation by Dibblee, 1967) into twenty­ cut southward through deeply incised canyons that cross two members and reported Permian fusulinids near the the axis of the El Paso Mountains, exposing the pre­ middle part (his Member 12) of the formation. Tertiary metamorphic and plutonic rocks that form the Christiansen (1961) mapped the El Paso Mountains core of the range. The west end of the El Paso Mountains from Red Rock Canyon eastward to the longitude of is separated from the south end of the Sierra Nevada the village of Garlock at a scale of 1:24,000; his mapping by low hills west of Red Rock Canyon; eastward the of the area now covered by the Garlock 7 .5-minute El Paso Mountains merge into a hilly terrain under­ quadrangle forms a partial basis for this compilation. lain by Mesozoic granitic rocks. Poole and others (1977, 1980) and Poole and Most of the west half of the El Paso Mountains (west Christiansen ( 1980) reported the results of additional of Mesquite Canyon) is underlain by an intrusive suite fossil discoveries from the western (structurally lower) of Late Permian and Early Triassic age (table 1; ap­ part of the Garlock Formation, demonstrating the pendix 1; Cox and Morton, 1980; Carr and others, presence of Ordovician and Devonian rocks in the 1984) ranging in composition from gabbro to granite formation. Poole (197 4) also tentatively correlated rocks (Dibblee, 1952; Christiansen, 1961). [Note: Geologic near the middle part of the Garlock Formation with ages in this report are based on the time scale of Palmer, Mississippian rocks of the Antler foreland basin of 1983; ages cited from the literature have been con­ Nevada. Building on this previous work, the remain­ verted as necessary to conform to decay constants rec­ der of the present compilation is based on 1:24,000- ommended by Steiger and Jager, 1977.] Immediately scale geologic mapping and stratigraphic studies done west of Mesquite Canyon, the Late Permian gneiss of between 1979 and 1982. The preliminary findings Weiss Mountain and numerous smaller bodies of fo­ of this study were presented by Carr and others (1980, liated felsic and mafic Late Permian intrusive rocks intrude 1984) and include the results of additional fossil dis­ the diverse assemblage of Paleozoic metasedimentary coveries throughout much of the Garlock Formation. and metavolcanic marine strata that underlies most of The metasedimentary and metavolcanic marine strata the east half of the El Paso Mountains. The Permian of the El Paso Mountains represent nearly every system intrusive rocks are gneissic, having a penetrative fo­ of the Paleozoic Era. There is no direct fossil evidence liation that is coplanar with the foliation in the meta­ for the Silurian, but Silurian to Early Devonian fossils morphic rocks to the east. The Triassic plutons that have been recovered from generally correlative rock intrude the gneiss of Weiss Mountain on the west are sequences exposed in Pilot Knob Valley, about 50 km undeformed; their intrusion postdates the ductile east of the El Paso Mountains, and some Silurian rocks deformation that affected the older rocks (Christiansen, could be present in the El Paso Mountains as well {Carr 1961). A Late Jurassic (table 2; Armstrong and Suppe, and others, 1992). 1 117"45' Naval Air Weapons Station . Ridgecrest IChina Lake 35"30' 35"15' EXPlANATION Sierra Nevada Sierra Nevada batholith Surficial deposits (Quaternary) Metasedimentary rocks Sedimentary and volcanic deposits (fertiary) Rand Mountains El Paso Mountains Granitoid pluton Granitoid pluton (Jurassic) Rand Schist Granitoid pluton \friassic and Permian) Johannesburg Gneiss of Hulin (1925) Bond Buyer sequence 33' Garlock assemblage Contact AREA OF MAP Fault-Dashed where inferred or approximately located; dotted where concealed Figure 1. Generalized geologic map of El Paso Mountains and surrounding area. Modified from Jennings and others (1962) and Carr and others (1984). 2 Two distinct sequences of Upper Cambrian and Ordo­ correlated the rocks comprising the Apache Mine unit vician rocks are present in the El Paso Mountains section. with Mississippian rocks in the Great Basin interpreted Upper Cambrian and Ordovician strata in the Garlock as foreland basin deposits shed from the Antler oro­ 7. 5-minute quadrangle (metasedimentary rocks of Colo­ genic highland. He interpreted the basal (western) contact rado Camp) are mostly meta-argillite and argillitic of these rocks (metasedimentary rocks of Apache Mine) metachert belonging to an outer continental-margin facies. as a faulted unconformity (see Poole, 197 4, Carr and Upper Cambrian and Ordovician rocks in the El Paso others, 1980). Peaks 7 .5-minute quadrangle (metasedimentary rocks The Pennsylvanian strata (metasedimentary rocks of of El Paso Peaks) are lithologically more diverse, including Benson Well) that conformably overlie the meta-sedi­ meta-argillite, marble (detrital metalimestone), graptolitic mentary· rocks of Apache Mine also are a turbidite slate, and orthoquartzite. These rocks represent facies sequence (slate and quartzite member). In the El Paso transitional between the outer and inner continental Peaks quadrangle, however, metalimestone representing margin. a shallower water environment forms the basal mem­ The Devonian rocks in the Garlock and parts of the ber (metalimestone member) of the metasedimentary El Paso Peaks quadrangles (metasedimentary rocks of rocks of Benson Well, and the Pennsylvanian section Gerbracht Camp) also represent outer continental-margin rests unconformably on rocks of inferred Devonian age. facies. The metasedimentary rocks of Gerbracht Camp The metalimestone member of the Benson Well unit comprise a sequence of metachert, metatuff, sandy marble grades upward into a sequence of very fine grained (detrital metalimestone), and meta-argillite with fine­ turbidites (slate and quartzite member), suggesting basin grained quartzite (distal turbidites). Greenstone that subsidence. we tentatively assign to the Devonian and infer to lie West of Mormon Flat, Permian strata (metasedimen­ stratigraphically below the metasedimentary rocks of tary rocks of Holland Camp, in part) rest unconform­ Gerbracht Camp is present, as well, in both the Garlock ably on Upper Cambrian or Lower Ordovician rocks. and El Paso Peaks quadrangles. Calcsilicate hornfels There, the lowermost part (member A) of the Permi­ and subordinate marble mapped as the upper mem­ an section is a lithologically heterogeneous unit of slate ber of the metasedimentary rocks of El Paso Peaks could containing beds of arkosic quartzite, metaconglomerate, also be, in part, Silurian(?) and Devonian(?) judging from metadolostone, and metalimestone. The quartzite, meta­ their apparent stratigraphic position. These rocks, like conglomerate, and beds of metamorphosed carbonate the lower members of the metasedimentary rocks of rocks are mostly debris-flow and turbidite deposits. Early El Paso Peaks, probably represent a facies transitional Permian fusulinids are present in the lower part of the between the outer and inner continental margin. section. Member B is slate containing turbidite beds Lower Mississippian rocks assigned to the Robbers of coarse-grained calcarenitic metalimestone. East of Mountain Formation (Carr and others, 1992) rest un­ Goler Gulch, most of the Permian section consists of
Recommended publications
  • Geologic Map of the El Paso Mountains Wilderness Study Area, Kern County, California
    DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP MF-1S27 UNITED STATES GEOLOGICAL SURVEY GEOLOGIC MAP OF THE EL PASO MOUNTAINS WILDERNESS STUDY AREA, KERN COUNTY, CALIFORNIA By Brett F. Cox and Michael F. Diggles STUDIES RELATED TO WILDERNESS age assignment is confirmed by four potassium-argon ages ranging from 15.1±0.5 m.y. to 17.9±1.6 m.y. The Black Bureau of Land Management Wilderness Study Areas Mountain Basalt is chemically distinctive, consisting of potassium-poor high-alumina basalt that is transitional The Federal Land Policy and Management Act (Public between tholeiitic basalt and alkali-olivine basalt. The basalt Law 94-579, October 21, 1976) requires the U.S. Geological was erupted mostly from east-west fissures, reflecting north- Survey and the U.S. Bureau of Mines to conduct mineral south extension between the Mojave Desert block and south­ surveys on certain areas to determine the mineral values, if western Basin and Range during early and middle Miocene any, that may be present. Results must be made available to time. the public and be submitted to the President and the The middle part of the Ricardo Formation was Congress. This report presents the results of a geologic deposited disconf ormably upon the Black Mountain Basalt and survey of the El Paso Mountains Wilderness Study Area the lower part of the Ricardo Formation during middle and (CDCA-164), California Desert Conservation Area, Kern late Miocene time. The deposits are composed of granitic County, California. and volcaniclastic detritus derived from the Mojave Desert block. Lacustrine mudstone is predominant within the area of the map but gives way to alluvial-fan sandstone and conglom­ ABSTRACT erate southwest of the map area.
    [Show full text]
  • Hazardous Materials Unit Leader
    CITY OF RIDGECREST Emergency Operations Plan Prepared For: Dennis Speer City Manager – Director of Emergency Services 100 West California Ave Ridgecrest, California 93555 Kern County June 2013 This Page is Intentionally Left Blank. City of Ridgecrest Emergency Operations Plan Table of Contents Part 1 - Basic Plan Introduction 1 Concept of Operations 2 Continuity of Government 6 Preservation of Records 8 Standardized Emergency Management System 8 National Incident Management System 8 California Emergency Response levels 9 Emergency Management Organization 11 Hazard Analysis Summaries 12 Departmental Responsibilities 17 Standard Operational Procedures 21 General Emergency Management 26 Weapons of Mass Destruction Incident 27 Emergency Operational Laws and Authority 28 Part 2 – Emergency Operations Center –EOC Concept of Operations 31 Activation Policy 32 Levels of Activation 33 Emergency Communication System 34 Incident Action Plan 34 Emergency Declarations 36 After-Action Reports 44 EOC Functions and Responsibilities 45 Management Section 46 Operations Section 48 Planning Section 51 Logistics Section 53 Finance/Administration Section 55 Security and Sign-In 57 Briefings and Conferences 57 After Action Reports 58 Message Flow and Priorities 59 Response Information Management System (RIMS) 62 Table of Contents Part 3 – Emergency Response Personnel Checklists Management Section : Director of Emergency Services 63 Legal Advisor 67 Emergency Services Coordinator 69 Public Information Officer 71 Rumor Control Unit Leader 74 Liaison Officer 77
    [Show full text]
  • Ridgecrest BUREAU of LAND MANAGEMENT
    BLM SPECIAL EDITION 1998 EXAMPLES OF AGENCY SIGNS SURFACE MANAGEMENT STATUS DESERT ACCESS GUIDE Ridgecrest BUREAU OF LAND MANAGEMENT USDA FOREST SERVICE l:100,0()0-Scale topographic map showing: Highways, roads and other manmade structures Water features • Contours and elevations in meters Recreation sites • Coverage of former desert access guide #4 Ridgecrest NATIONAL PARK SERVICE UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT CALIFORNIA STATE PARKS Edited and published by the Bureau of Land Management National Applied Resource Sciences Center, Denver, Colorado in cooperation with the Bureau of Land Management California State Office. Planimetry partially revised by BLM from various source material. Revised information not field . he. i-rd Base map prepared by the U.S. Geological Survey. Compiled from USGS 1:24,000 and l:62,5O0-scale topographic maps dated 1949-1973, and from advance materials. Partially revised from aerial photographs taken 1973-1989 and other source data. Revised information not CALIFORNIA STATE field checked. Map edited 1993. VEHICULAR RECREATION AREA Help protect your public lands by observing posted Projection and 10,000-meter grid, zone 11: Universal OHV designations. Watch for OHV signs and read hari'.verse Mercator. 25,000-foot grid licks based on them carefully. California coordinate system, zone 4 and 5. 1927 North American Datum. For more information contact the HIM, USDA Forest Service, National Park Service, California State Park, or California State Motorized Vechicle Recreation Area Land lines are omitted in areas of extensive tract surveys. Office (see back panel for address and phone There may be private inholdings within the boundaries of numbers).
    [Show full text]
  • Red Rock Canyon State Park
    GEOLOGICAL GEMS OF CALIFORNIA STATE PARKS | GEOGEM NOTE 38 Red Rock Canyon State Park Photo: Will Harris Geomorphic Provinces and Boundaries Red Rock Canyon lies in the Basin and Range geomorphic province which features large north-south Process/Feature: trending mountains and valleys. This park is just east Basin sedimentology along province of the southern Sierra Nevada and north of the Mojave boundaries, Paleocene and Miocene Desert geomorphic province. Features and rocks fossils, and scenic cliffs from the neighboring geomorphic provinces can be found around the park. The east–west trending Garlock Fault, just south of the park, separates the Mojave Desert from the Basin and Range. The El Paso Fault, a branch of the Garlock Fault, traces northeast through the park, near the crest of the El Paso Mountains. During two periods (55 to 65 and 5 to 20 million years ago) this area subsided and over 5,000 feet of sediments and volcanic materials accumulated. Later movement along the El Paso Fault uplifted the sediments, exposing them to erosion that formed the badland topography. Faults The Garlock Fault is an active left-lateral fault (one side of the fault moves to the left relative to the other side). The Garlock Fault runs northeasterly from its intersection with the San Andreas Fault in the Tehachapi Mountains to the Avawatz Mountains south of Death Valley. The amount of displacement on the Garlock Fault is estimated at 40 miles. Red Rock Canyon State Park GeoGem Note 38 Why it’s important: Red Rock Canyon’s rugged beauty has been the scene in western and science fiction films such as Stagecoach with John Wayne (1939), The Mummy with Boris Karloff (1933), 20,000 Leagues Under the Sea (1954), and Jurassic Park (1993).
    [Show full text]
  • Publications in Cultural Heritage 27
    California Department of Parks and Recreation Archaeology, History and Museums Division NUMBER 27 27 PUBLICATIONS IN CULTURAL HERITAGE THE HUMAN HISTORY OF RED ROCK CANYON STATE PARK OF RED ROCK CANYON STATE THE HUMAN HISTORY AN ARCHAEOLOGICAL PERSPECTIVE ON THE HUMAN HISTORY OF RED ROCK CANYON STATE PARK Cultural Heritage Publications in AN ARCHAEOLOGICAL PERSPECTIVE ON THE HUMAN HISTORY OF RED ROCK CANYON STATE PARK THE RESULTS OF SITE SURVEY WORK 1986-2006 AN ARCHAEOLOGICAL PERSPECTIVE ON THE HUMAN HISTORY OF RED ROCK CANYON STATE PARK THE RESULTS OF SITE SURVEY WORK 1986-2006 Michael P. Sampson California Department of Parks and Recreation, San Diego PUBLICATIONS IN CULTURAL HERITAGE NUMBER 27, 2010 Series Editor Christopher Corey Editorial Advisor Richard T. Fitzgerald Department of Parks and Recreation Archaeology, History and Museums Division © 2010 by California Department of Parks and Recreation Archaeology, History and Museums Division Publications in Cultural Heritage, Number 27 An Archaeological Perspective on the Human History of Red Rock Canyon State Park: The Results of Site Survey Work 1986-2006 By Michael P. Sampson Editor, Richard Fitzgerald; Series Editor, Christopher Corey All rights reserved. No portion of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing from the California Department of Parks and Recreation. Orders, inquiries, and correspondence should be addressed to: Department of Parks and Recreation PO Box 942896 Sacramento, CA 94296 800-777-0369, TTY relay service, 711 [email protected] Cover Images: Top left: Two Kawaiisu Men Standing in Front of Hillside in Red Rock Canyon State Park.
    [Show full text]
  • The Stratigraphie Evolution of the El Paso Basin, Southern California: Implications for the Miocene Development of the Garlock Fault and Uplift of the Sierra Nevada
    The stratigraphie evolution of the El Paso basin, southern California: Implications for the Miocene development of the Garlock fault and uplift of the Sierra Nevada DANA P. LOOMIS Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27514 DOUGLAS W. BURBANK Department of Geological Sciences, University of Southern California, Los Angeles, California 90089-0740 ABSTRACT This paper presents the results of stratigraphic, chronologic, and tec- tonic investigations of the Miocene Ricardo Group in the El Paso basin. The Ricardo Group is a 1,700-m-thick sequence of Miocene vol- Sedimentary and magnetostratigraphic data provide evidence for the onset canic rocks and continental sedimentary rocks deposited between ~19 of east-west extension north of the Garlock fault about 10 Ma and for the and 7 Ma in the El Paso basin, near the junction of the Garlock fault emergence of the Sierra Nevada as a topographic upland about 8 Ma. In and the Sierra Nevada frontal fault in southern California. The combi- addition to these age constraints for the Garlock fault and Sierra Nevada, nation of stratigraphic and structural data from the Ricardo Group this analysis also provides an opportunity to test some plate-tectonic mod- with chronologic and rotational histories derived from magnetostrati- els for the late Cenozoic sedimentary and tectonic evolution of southern graphic and radiometric studies provides some new constraints for the California. Sedimentary evidence from the El Paso basin is largely consist- morphotectonic emergence of the Sierra Nevada, the initiation of ent with proposals that basin growth and sedimentation (Glazner and strike-slip movement on the Garlock fault, and related east-west ex- Loomis, 1984) and basin-and-range extension (Ingersoll, 1982; Glazner tension in the southern Basin and Range region.
    [Show full text]
  • Desert Fever: an Overview of Mining History of the California Desert Conservation Area
    Desert Fever: An Overview of Mining History of the California Desert Conservation Area DESERT FEVER: An Overview of Mining in the California Desert Conservation Area Contract No. CA·060·CT7·2776 Prepared For: DESERT PLANNING STAFF BUREAU OF LAND MANAGEMENT U.S. DEPARTMENT OF THE INTERIOR 3610 Central Avenue, Suite 402 Riverside, California 92506 Prepared By: Gary L. Shumway Larry Vredenburgh Russell Hartill February, 1980 1 Desert Fever: An Overview of Mining History of the California Desert Conservation Area Copyright © 1980 by Russ Hartill Larry Vredenburgh Gary Shumway 2 Desert Fever: An Overview of Mining History of the California Desert Conservation Area Table of Contents PREFACE .................................................................................................................................................. 7 INTRODUCTION ....................................................................................................................................... 9 IMPERIAL COUNTY................................................................................................................................. 12 CALIFORNIA'S FIRST SPANISH MINERS............................................................................................ 12 CARGO MUCHACHO MINE ............................................................................................................. 13 TUMCO MINE ................................................................................................................................ 13 PASADENA MINE
    [Show full text]
  • Tectonic Controls on Alluvial Fan Dissection in the El Paso Mountains
    Gaffney 1 Tectonic Controls on Alluvial Fan Dissection in the El Paso Mountains A Senior Project Presented to the Faculty of the Natural Resources and Environmental Sciences Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Bachelor of Science By Michael Gaffney © Michael Gaffney June, 2018 Gaffney 2 ACKNOWLEDGEMENTS: I would like to thank Dr. Antonio Garcia for his tremendous support and guidance on this project. ABSTRACT: The localized dissection of alluvial fans along the western El Paso Mountains is under question. A relatively minor, south dipping normal fault, previously unmentioned in scientific literature, cuts across Quaternary terraces and alluvial fans in the piedmont of the El Paso Mountains. The linear trend of footwall uplift and the pattern of stream incision into the footwall adjacent to the linear trend of footwall uplift reveal that fan dissection is a result of base level fall caused by ongoing tectonism along the El Paso fault system. The regional importance is discussed as the timing of faulting reveals relatively recent uplift of the El Paso Mountains, and a model of extensional strain partitioning is argued for to account for this uplift in the tectonically complex Garlock Fault Zone. Gaffney 3 INTRODUCTION: The study location is in Red Rock Canyon State Park, which is close to the boundary between the Sierra Nevada mountain range and the Mojave Desert (Fig. 1). The precise study area is in the southern part of Red Rock Canyon State Park along the mountain front of the El Paso Mountains (Fig. 2). The focus is on the western extent of the El Paso Mountains because the alluvial fans are more dissected here than they are along the rest of the range (Fig.
    [Show full text]
  • Pamphlet to Accompany Scientific Investigations Map 3107
    Surficial Geologic Map of the Cuddeback Lake 30' x 60' Quadrangle, San Bernardino and Kern Counties, California By Lee Amoroso and David M. Miller View northwest from the Rand Mountains, of Koehn (dry) Lake, the El Paso Mountains, and the southern Sierra Nevada. Pamphlet to accompany Scientific Investigations Map 3107 2012 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract ............................................................................................................................................................................................1 Introduction ......................................................................................................................................................................................1
    [Show full text]
  • Structural Reactivation and Overprinting of the Eastern Rand
    STRUCTURAL REACTIVATION AND OVERPRINTING OF THE EASTERN RAND THRUST COMPLEX, MOJAVE DESERT, SOUTHERN CALIFORNIA A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Geological Sciences By Andrew H. McLarty 2014 ACKNOWLEDGMENTS This research represents devotion and perseverance in something I truly love, not only as a student but as a professional geologist. I am extremely pleased to present the following to California State Polytechnic University, Pomona. I want to personally thank my advisor Dr. Nourse for recommending this project to me; words do not do justice for what you have taught me. Over the past 20+ years I have had many mentors, who have made me the geologist I am today. Those of which are; my father, Mark McLarty, Dr. Tarman, Dr. Jessey, Dr. Herber, and last but not least Dr. Nourse, thank you all. This process of being a grad student at this stage of my life has been difficult at times and it would not have been possible without the support, love and guidance from my wife, Sarah, and my two children, Madison and Kylie. Sarah, you have reminded me numerously not to give up, reminded me to be persistent, bear down, and to focus on my goals, thank you Michi and my lil ones, for all your love and support. I would also like to thank, fellow grad student, Logan Wicks for all your help, not only in the field, but with other aspects regarding this project. His abilities as a geologist and field geologists, to observe and recognize geologic aspects in the field is astonishing.
    [Show full text]
  • Updated Shallow Temperature Survey and Resource Evolution for the Coso Geothermal Field
    Proceedings World Geothermal Congress 2020 Reykjavik, Iceland, April 26-May 2, 2020 Updated Shallow Temperature Survey and Resource Evolution for the Coso Geothermal Field Kelly Blake1, Andrew Sabin1, Mariana Eneva2, Stephanie Nale1, Michael Lazaro1, Andrew Tiedeman1, Dave Meade1, Wei-Chuang Huang1 1Navy Geothermal Program Office, 429 E. Bowen Road, China Lake, CA 93555, USA 2Imageair Inc., 600 Greensburg Circle, Reno, NV 89509, USA [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] Keywords: Resource evaluation, Exploration, Coso Geothermal Field, Geology, Geophysics, InSAR ABSTRACT The Navy Geothermal Program Office completed a 2 meter temperature probe survey at and in proximity to the Coso geothermal field in 2019. This survey augmented our understanding of the larger shallow temperature anomaly associated with Coso and noted variations over time in the shallow ground temperature within the Coso field. These data were compared to other recently acquired data at Coso including a LiDAR lineation analysis and surface deformation measured with InSAR. A working hypothesis is that shallow temperatures, both directly above and proximal to the Coso geothermal field, have changed since the 1980s as the field has been produced and fluid levels have been drawn down. Specifically, within the Main Flank where the shallowest, longest running production has occurred within the field, the shallow temperature has a decrease in shallow temperature at present, compared to shallow high temperatures prior to production. Furthermore, the results of the survey demonstrate that the subsidence within the Main Flank detected with InSAR using satellite data, seem to coincide with a drop in shallow ground temperature.
    [Show full text]
  • Surficial Geologic Map and Geodatabase of the Cuddeback Lake 30' X 60' Quadrangle, San Bernardino and Kern Counties, California
    Surficial Geologic Map and Geodatabase of the Cuddeback Lake 30' x 60' Quadrangle, San Bernardino and Kern Counties, California By Lee Amoroso and David M Miller Pamphlet to accompany Open-file Report 2006-1276 2006 U.S. Department of the Interior U.S. Geological Survey 2 Surficial geologic map and geodatabase of the Cuddeback Lake 30’ x 60’ quadrangle, California Abstract A USGS surficial geologic mapping project, focused on the arid Southwest USA, conducted mapping and process studies to investigate landscape development and tectonic evolution. This project included the Cuddeback Lake 1:100,000-scale quadrangle located in the western Mojave Desert north-northeast of Los Angeles, between the southern Sierra Nevada and San Bernardino Mountains, in Kern and San Bernardino Counties, California. Geomorphic features include high-relief mountains, small hills, volcanic domes, pediments, broad alluvial valleys, and dry lakes. The mapped area includes pre-Tertiary plutonic, metavolcanic, metasedimentary, and other metamorphic rocks; Tertiary sedimentary and volcanic rocks; and Quaternary sediments and basalts. Included in the area are the El Paso, Lockhart, Blackwater, and Muroc faults as well as the central segment of the Garlock fault zone. The tectonically active western Mojave Desert and the variety of surficial materials have resulted in distinctive geomorphic features and terrains. Geologic mapping has shown that active faults are widespread and have influenced drainage patterns. The tectonically active area near the Garlock fault zone and the nearby El Paso fault influenced development of drainage networks; base level is controlled by fault offset. There is evidence of a late Tertiary drainage network preserved in remnants of alluvial fans and paleo-drainage deposits north of the El Paso Mountains, west of the Lava Mountains, and south and west of the Rand Mountains.
    [Show full text]