Implication for Seagrass Restoration and Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. -
Seed Selection and Storage with Nano-Silver and Copper As
www.nature.com/scientificreports OPEN Seed selection and storage with nano-silver and copper as potential antibacterial agents for the seagrass Zostera marina: implications for habitat restoration Shaochun Xu1,2,3, Yi Zhou1,2,4*, Shuai Xu1,2,3, Ruiting Gu1,2,3, Shidong Yue1,2,3, Yu Zhang1,2,3 & Xiaomei Zhang1,2,4 Globally, seagrass meadows are extremely important marine ecosystems that are disappearing at an alarming rate. Therefore, research into seagrass restoration has become increasingly important. Various strategies have been used in Zostera marina L. (eelgrass) restoration, including planting seeds. To improve the efciency of restoration by planting seeds, it is necessary to select high-quality seeds. In addition, a suitable antibacterial agent is necessary for wet storage of desiccation sensitive seeds to reduce or inhibit microorganism infection and seed decay. In the present study, an efcient method for selecting for high-quality eelgrass seeds using diferent specifc gravities of salt water was developed, and potential antibacterial agents (nano-silver and copper sulfate) for seed storage were assessed. The results showed that the highest proportion of intact seeds (72.91 ± 0.50%) was recorded at specifc gravities greater than 1.20. Therefore, specifc gravities greater than 1.20 can be used for selecting high-quality eelgrass seeds. During seed storage at 0 °C, the proportion of intact seeds after storage with nano-silver agent was over 90%, and also higher than 80% with copper sulfate agent, which was signifcantly higher than control treatments. The fndings revealed a potential selection method for high-quality seeds and long-term seed storage conditions for Z. -
How Do Seagrasses Face Herbivory? a Case of Study in Cadiz Bay
How do seagrasses face herbivory? A case of study in Cadiz bay Isabel Casal*1, Fernando G. Brun1 and Eva Zub´ıa2 *Corresponding author: [email protected] 1Department of Biology (Ecology Area), University of C´adiz,Puerto Real (C´adiz)Spain 2Department of Organic Chemistry, University of C´adiz,Puerto Real (C´adiz),Spain Keywords: Herbivory, Marine Angiosperms, Natural Products Introduction The marine angiosperms or seagrasses are vascular plants with leaves, rhizomes, roots, flowers and seeds that inhabit marine environment. Seagrasses are characterized by developing extensive crowded meadows in shallow coastal areas, forming one of the most important coastal habitats of the biosphere, bearing a great ecological value because of the services and functions they provide, both to humans and marine ecosystems. Seagrasses are distributed along all the coasts of the world, except in Antarctica (Robertson and Mann, 1984) while only four species are found in the Mediterranean Sea: Zostera noltei Hornemann (1832), Zostera marina Linnaeus (1753), Cymodocea nodosa Ascherson (1870) and Posidonia oceanica (Linnaeus) Delile (1813). With the exception of the P. oceanica, the other three species coexist in the Bay of Cadiz (Figure1, modified from Brun et al.(2015)). Figure 1: (A) Seagrass habitats in the Bay of Cadiz (B) Zostera noltei (C) Cymodocea nodosa (D) Zostera marina. 1 Marine angiosperms possess a secondary metabolism that synthetizes specific organic compounds known as natural products. These compounds play important roles in the survival of the plants, including their involvement in chemical defence mechanisms. One of the ecological functions played by these natural products could be their deterrent capacity against herbivores. -
Macrobrachium Intermedium in Southeastern Australia: Spatial Heterogeneity and the Effects of Species of Seagrass
MARINE ECOLOGY PROGRESS SERIES Vol. 75: 239-249, 1991 Published September 11 Mar. Ecol. Prog. Ser. Demographic patterns of the palaemonid prawn Macrobrachium intermedium in southeastern Australia: spatial heterogeneity and the effects of species of seagrass Charles A. Gray* School of Biological Sciences, University of Sydney, 2006, NSW. Australia ABSTRACT. The effects of species of seagrass (Zostera capricorni and Posidonia australis) on spatial and temporal heterogeneity in the demography of estuarine populations of the palaemonid prawn Macrobrachium intermedium across 65 km of the Sydney region, southeastern Australia, were examined. Three estuaries were sampled in 1983 and 1984 to assess the magnitude of intra- and inter- estuary variability in demographic characteristics among populations. Species of seagrass had no effect on the demographic patterns of populations: differences in the magnitude and directions of change in abundances, recruitment, reproductive characteristics, size structures and growth were as great among populations within each species of seagrass as those between the 2 seagrasses Abiotic factors, such as the location of a meadow in relation to depth of water and distance offshore, and the interactions of these factors with recruiting larvae are hypothesised to have greater influence than the species of seagrass in determining the distribution and abundance of these prawns. Spatial and temporal heterogeneity in demography was similar across all spatial scales sampled: among meadows (50 m to 3 km apart) in an estuary and among meadows in all 3 estuaries (10 to 65 km apart). Variability in demographic processes among populations in the Sydney region was most likely due to stochastic factors extrinsic to the seagrasses then~selves.I conclude that the demography of seagrass-dwelling estuarine populations of M. -
Sub-Regional Report On
EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2. -
Seagrass Habitats of Northeast Australia: Models of Key Processes and Controls
BULLETIN OF MARINE SCIENCE, 71(3): 1153–1169, 2002 SEAGRASS HABITATS OF NORTHEAST AUSTRALIA: MODELS OF KEY PROCESSES AND CONTROLS T. J. B. Carruthers, W. C. Dennison, B. J. Longstaff, M. Waycott, E. G. Abal, L. J. McKenzie and W. J. Lee Long ABSTRACT An extensive and diverse assemblage of seagrass habitats exists along the tropical and subtropical coastline of north east Australia and the associated Great Barrier Reef. In their natural state, these habitats are characterised by very low nutrient concentrations and are primarily nitrogen limited. Summer rainfall and tropical storms/cyclones lead to large flows of sediment-laden fresh water. Macro grazers, dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) are an important feature in structuring tropical Aus- tralian seagrass communities. In general, all seagrass habitats in north east Australia are influenced by high disturbance and are both spatially and temporally variable. This pa- per classifies the diversity into four habitat types and proposes the main limiting factor for each habitat. The major processes that categorise each habitat are described and sig- nificant threats or gaps in understanding are identified. Four broad categories of seagrass habitat are defined as ‘River estuaries’, ‘Coastal’, ‘Deep water’ and ‘Reef’, and the domi- nant controlling factors are terrigenous runoff, physical disturbance, low light and low nutrients, respectively. Generic concepts of seagrass ecology and habitat function have often been found inappropriate to the diverse range of seagrass habitats in north east Australian waters. The classification and models developed here explain differences in habitats by identifying ecological functions and potential response to impacts in each habitat. -
The Current Status of Halophila Beccarii: an Ecologically Significant, Yet Vulnerable
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2020 doi:10.20944/preprints202008.0126.v1 The current status of Halophila beccarii: An ecologically significant, yet Vulnerable seagrass of India 1Amrit Kumar Mishra, 1Deepak Apte 1Marine Conservation Department, Bombay Natural History Society, Hornbill House, Dr. Salim Ali Chowk, Shaheed Bhagat Singh Road, Opp. Lion Gate, Mumbai, 400001, India Corresponding author: [email protected] Abstract: We reviewed the current status of a Vulnerable seagrass, Halophila beccarii from the coast of India using the published data from 1977-2020. We found that the seagrass, H. beccarii has a pan India distribution on both east and west coast. It is abundant in the intertidal silty-muddy region on the west coast, while on the east coast it is found on sandy habitats, with few exceptions of muddy habitat. H. beccarii was found to be associated with mangroves or smaller seagrass species within a depth limit of 1.7m. Low salinity and high nitrate levels were observed for the H. beccarii meadows of the west coast due to its association with mangroves. The nutrient levels in H. beccarii meadows of India were comparatively lower than other seagrass meadows. Most of the research on H. beccarii has focoused on its morphometrics (41%), reproductive (33%) and distribution (29%) along the coast of India. Reproductive traits such as flowering and fruiting varying according to the seasons of each coast due to the influence of monsoon and its associated temperature, salinity and nutrient influx. H. beccarii has a great potential of various bioactive compounds, which needs further investigation. -
1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages. -
Using Edna to Determine the Source of Organic Carbon in Seagrass
Page 1 of 37 Limnology and Oceanography ambiguity. Identifying the sources of OC to the sediments of blue C ecosystems is crucial for building robust and accurate C budgets for these systems. Accepted Article This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version record. Please cite this article as doi:10.1002/lno.10499. This article is protected by copyright. All rights reserved. Limnology and Oceanography Page 2 of 37 Title of article: Using eDNA to determine the source of organic carbon in seagrass meadows Authors’ complete names and institutional affiliations: Ruth Reef 1,2,3*, Trisha B Atwood 1,4* , Jimena Samper-Villarreal 5,6, Maria Fernanda Adame 7, Eugenia Sampayo 1, Catherine E Lovelock 1 1) Global Change Institute, University of Queensland, St Lucia QLD 4072 Australia 2) Department of Geography, University of Cambridge, Downing Site, Cambridge CB2 3EN United Kingdom 3) School of Earth, Atmosphere and Environment, Monash University, Clayton VIC 3800 Australia 4) Department of Watershed Sciences and Ecology Center, Utah State University, Logan, Utah 84322-5210, USA 5) Marine Spatial Ecology Lab and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia Qld 4072, Australia. 6) Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) & Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica 7) Australian Rivers Institute, Griffith University, Nathan QLD 4111 Australia * Both authors contributed equally to this work Accepted Article Corresponding author: Dr Ruth Reef, Cambridge Coastal Research Unit, The University of Cambridge, CB2 3EN, United Kingdom. -
Seagrasses from the Philippines
SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES •NUMBER 21 Seagrasses from the Philippines Ernani G. Mefiez, Ronald C. Phillips, and Hilconida P. Calumpong ISSUED DEC 11983 SMITHSONIAN PUBLICATIONS SMITHSONIAN INSTITUTION PRESS City of Washington 1983 ABSTRACT Menez, Ernani G., Ronald C. Phillips, and Hilconida P. Calumpong. Sea grasses from the Philippines. Smithsonian Contributions to the Marine Sciences, number 21, 40 pages, 26 figures, 1983.—Seagrasses were collected from various islands in the Philippines during 1978-1982. A total of 12 species in seven genera are recorded. Generic and specific keys, based on vegetative characters, are provided for easier differentiation of the seagrasses. General discussions of seagrass biology, ecology, collection and preservation are presented. Local and world distribution of Philippine seagrasses are also included. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Seascape along the Atlantic coast of eastern North America. Library of Congress Cataloging in Publication Data Menez, Ernani G. Seagrasses from the Philippines. (Smithsonian contributions to the marine sciences ; no. 21) Bibliography: p. Supt. of Docs, no.: SI 1.41:21 1. Seagrasses—Philippines. I. Phillipps, Ronald C. II. Calumpong, Hilconida P. III. Ti tle. IV. Series. QK495.A14M46 1983 584.73 83-600168 Contents Page Introduction 1 Acknowledgments 3 Materials and Methods 3 Collecting and Preserving Seagrasses 4 General Features of Seagrass Biology and Ecology 6 Key to the Philippine Seagrasses 7 Division ANTHOPHYTA 8 Class MONOCOTYLEDONEAE 8 Order HELOBIAE 8 Family POTAMOGETONACEAE 8 Cymodocea rotundata Ehrenberg and Hemprich, ex Ascherson 8 Cymodocea serrulata (R. -
Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States
Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States Mark D. Moffler and Michael J. Durako Florida Department of Natural Resources Bureau of Marine Research 100 Eighth Ave., S.E. St. Petersburg, Florida 33701 ABSTRACT Studiesof reproductivebiology in seagrassesof the southeasternUnited States have addressed descriptive morphologyand anatomy,reproductive physiology, seed occurrence,and germination.Halodale wrightii Aschers.,Halophila engelmannii Aschers., Syringodium filiforme Kutz., and Thalassiatestudiaum Banks ex Konig are dioecious;Halophila decipiens Ostenfeld and Ruppiamaritima L. are monoecious.In Halophila johrtsoaii Eiseman, only fernale flowers are known. With the exception of R, maritima, which has hydroanemophilouspollination, these species have hydrophilous pollination. Recent reproductive-ecology studiessuggest that reproductivepatterns are due to phenoplasticresponses and/or geneticadaptation to physico-chemicalenvironmental conditions. Laboratory and field investigationsindicate that reproductive periodicityis temperaturecontrolled, but proposedmechanisms are disputed.Water temperature appears to influencefloral developmentand maybe importantin determiningsubsequent flower densities and fruit/seed production.Flowering under continuouslight in vitro suggeststhat photoperiodplays a limitedrole in floral induction.Flower expression and anthesis,however, may be influencedby photoperiod.Floral morpho- ontogeneticstudies of T. testudinumfield populationsdemonstrated the presenceof early-stageinflorescences -
Restoration of Seagrass Meadows in the Mediterranean Sea: a Critical Review of Effectiveness and Ethical Issues
water Review Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues Charles-François Boudouresque 1,*, Aurélie Blanfuné 1,Gérard Pergent 2 and Thierry Thibaut 1 1 Aix-Marseille University and University of Toulon, MIO (Mediterranean Institute of Oceanography), CNRS, IRD, Campus of Luminy, 13009 Marseille, France; [email protected] (A.B.); [email protected] (T.T.) 2 Università di Corsica Pasquale Paoli, Fédération de Recherche Environnement et Societé, FRES 3041, Corti, 20250 Corsica, France; [email protected] * Correspondence: [email protected] Abstract: Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural Citation: Boudouresque, C.-F.; ecosystem (e.g., sandy bottoms, sublittoral reefs) with P.