Port-Orford Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Regeneration of White and Red Fir. . . Influence of Several Factors. Berkeley, Calif., Pacific SW
PACIFIC SOUTHWEST Forest and Range FOREST SERVICE. U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station U.S.D.A. FOREST SERVICE RESEARCH PAPER PSW- 58 /1970 Gordon, Donald T. 1970. Natural regeneration of white and red fir. influence of several factors. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta. 32 p., illus. (U.S.D.A. Forest Serv. Res. Pap. PSW-58) In a group of studies at Swain Mountain Experimental Forest in northeastern California, seedling survival and mortality were analyzed within the general framework of seed production and dispersal, germination, seedbed condition, soil surface temperature, insolation, soil moisture, and vegetative competition. Factors found to favor seedling establishment were abundance of sound seed, mineral soil seedbed, and probably some shade in the first year. Chief obstacles to seedling survival and growth included strong insolation, deep litter, insects, competing low vegetation, and time between good seed years. The most practical approach to securing natural regeneration appears to be keeping abundant seed trees close to a prepared mineral soil seedbed. Oxford: 231–181.525[+ 174.7 Abies concolor + 174.7 Abies magnifica + 174.7 Abies magnifica var. shastensis]. Retrieval Terms: Abies concolor; Abies magnifica; Abies magnifica var. shastensis; natural regeneration; seedling establishment; seedbed; protective shading; seed production; seedling mortality; Swain Mountain Experimental Forest. Gordon, Donald T. 1970. Natural regeneration of white and red fir. influence of several factors. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta. 32 p., illus. (U.S.D.A. Forest Serv. Res. Pap. PSW-58) In a group of studies at Swain Mountain Experimental Forest in northeastern California, seedling survival and mortality were analyzed within the general framework of seed production and dispersal, germination, seedbed condition, soil surface temperature, insolation, soil moisture, and vegetative competition. -
Appendix A: Project Partners
Humboldt County Coastal Trail Implementation Strategy Technical Appendix JANUARY 2011 Prepared for: State of California Coastal Conservancy Project team: Natural Resources Services Division of Redwood Community Action Agency Alta Planning + Design Planwest Partners Streamline Planning Consultants Humboldt County Coastal Trail Implementation Strategy TECHNICAL APPENDICES Thank you to the community members and agency staff who provided input during public meetings and advisory team workshops throughout the planning process. Your participation and contributions are key to this and future efforts to bring the CCT to fruition. Peter Jarausch Project Manager State of California Coastal Conservancy [email protected] This plan was made possible through Proposition 40 funding Photo credits: Kids on bicycles, N. Wynne; Trail horses, U. Driscoll; Eureka boardwalk, J. Kalt All other photos by project team Appendix A: Project Partners Primary Partners ................................................................................................................................................................... 2 Federal Agencies .............................................................................................................................................................. 2 Bureau of Land Management (BLM) ....................................................................................................................... 2 U.S. Fish and Wildlife Service (USFWS) ................................................................................................................ -
Seed Maturity in White Fir and Red Fir. Pacific Southwest Forest and Range Exp
PACIFIC SOUTHWEST Forest and Range FOREST SERVICE U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station USDA FOREST SERVICE RESEARCH PAPER PSW-99 /1974 CONTENTS Page Summary ................................................... 1 Introduction ................................................. 3 Methods .................................................... 3 Testing Fresh Seeds ....................................... 3 Testing Stratified Seeds .................................... 3 Seedling Vigor Tests ...................................... 4 Artificial Ripening Trial ................................... 4 Other Observations ........................................ 4 Results and Discussion ....................................... 5 Cone Specific Gravity ..................................... 5 Seed Germination, byCollection Date ....................... 5 Seed GerminationandCone Specific Gravity ................ 7 Red Fir Seedling Vigor .................................... 9 ArtificialRipening of White Fir Seeds ....................... 9 OtherMaturity Indices ..................................... 9 Application ................................................. 10 Literature Cited.............................................. 12 THE AUTHOR WILLIAM W. OLIVER is doing silvicultural research on Sierra Nevada conifer types with headquarters at Redding, California. He earned a B.S. degree (1956) in forestry from the University of New Hampshire, and an M.F. degree (1960) from the University of Michigan. A native of -
Chamaecyparis Lawsoniana: Lawson Falsecypress1 Edward F
ENH313 Chamaecyparis lawsoniana: Lawson Falsecypress1 Edward F. Gilman and Dennis G. Watson2 Introduction General Information Often seen at 40 to 60 feet tall by 15 feet wide in its culti- Scientific name: Chamaecyparis lawsoniana vated form, this North American native can soar to heights Pronunciation: kam-eh-SIP-uh-riss law-so-nee-AY-nuh of 100 to 150 feet in the wild. The massive, thick trunk and Common name(s): Lawson falsecypress, Port Orford cedar formal, upright, conical silhouette is softened by the gently Family: Cupressaceae weeping tips of the short, upright branches. The flattened, USDA hardiness zones: 5B through 7B (Fig. 2) dark blue-green branchlets have a delicate, almost fern-like Origin: native to North America appearance, and are nicely complemented by the rough, Invasive potential: little invasive potential deeply furrowed, reddish-brown bark. Available in a wide Uses: specimen; screen; bonsai variety of forms and bluish foliage colors, Lawson falsecy- Availability: not native to North America press still remains today an important timber trees from the Pacific Northwest. But it is rare in the nursery trade and probably not well adapted to most landscapes. Figure 2. Range Description Height: 40 to 60 feet Spread: 15 to 25 feet Crown uniformity: symmetrical Figure 1. Mature Chamaecyparis lawsoniana: Lawson Falsecypress 1. This document is ENH313, one of a series of the Environmental Horticulture, UF/IFAS Extension. Original publication date November 1993. Reviewed May 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; Dennis G. Watson, former associate professor, Agricultural Engineering Department, UF/IFAS Extension, Gainesville FL 32611. -
Characterizing Tribal Cultural Landscapes, Volume II: Tribal Case
OCS Study BOEM 2017-001 Characterizing Tribal Cultural Landscapes Volume II: Tribal Case Studies US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region This page intentionally left blank. OCS Study BOEM 2017-001 Characterizing Tribal Cultural Landscapes Volume II: Tribal Case Studies David Ball Rosie Clayburn Roberta Cordero Briece Edwards Valerie Grussing Janine Ledford Robert McConnell Rebekah Monette Robert Steelquist Eirik Thorsgard Jon Townsend Prepared under BOEM-NOAA Interagency Agreement M12PG00035 by National Oceanic and Atmospheric Administration Office of National Marine Sanctuaries 1305 East-West Highway, SSMC4 Silver Spring, MD 20910 Makah Tribe Confederated Tribes of Grand Ronde Community of Oregon Yurok Tribe National Marine Sanctuary Foundation US Department of Commerce National Oceanic and Atmospheric Administration Office of National Marine Sanctuaries US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region December 31, 2017 This page intentionally left blank. DISCLAIMER This study was funded, in part, by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Pacific Outer Continental Shelf (OCS) Region, Camarillo, CA, through Interagency Agreement Number M12PG00035 with the US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA). This report has been technically reviewed by BOEM and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY This report can be downloaded from the Bureau of Ocean Energy Management’s Recently Completed Environmental Studies – Pacific webpage at https://www.boem.gov/Pacific-Completed-Studies/. -
Cupressaceae Calocedrus Decurrens Incense Cedar
Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus). -
Susceptibility of Pacific Yew (Taxus Brevifolia Nutt.) to Phytophthora Lateralis Redacted for Privacy Abstract Approved: Everett M Hansen
AN ABSTRACT OF THE THESIS OF Marion S. Murray for the degree of Master of Science in Plant Pathology presented on April 10, 1995. Title: Susceptibility of Pacific Yew (Taxus brevifolia Nutt.) to Phytophthora lateralis Redacted for Privacy Abstract Approved: Everett M Hansen In 1991 Pacific yew (Taxus brevifolia Nutt.) was reported as a new host for Phytophthora lateralis Tucker and Milbrath which is an aggressive root rot pathogen thought previously to be specific to Port-Orford-cedar. This study was designed to compare the pathogenicity of P. lateralis on the two hosts, and to characterize sites where Pacific yew mortality occurs. The specific objectives were: 1) compare root colonization and mortality of Pacific yew and Port-Orford-cedar seedlings and rooted cuttings; 2) compare lesion length on inoculated Pacific yew and Port-Orford cedar branches and stems; 3) compare zoospore attraction to freshly cut Pacific yew and Port-Orford-cedar rootlets; 4) compare amount of mortality of Pacific yew and Port-Orford-cedar in infested drainages and determine extent of yew mortality; and 5) characterize sites where P. lateralis causes Pacific yew mortality. Root colonization of P. lateralis was significantly greater in cedar than in yew. Seedling mortality averaged 58% for cedar and 4% for yew. Lesion length on the cedar seedling stems was twice the lesion length on yew stems, and cedar branches had lesions four times longer than yew branches. Abundant zoospore aggregation occurred on cedar rootlets along the zone of elongation and the region of maturation. In comparison, far fewer zoospores encysted along the yew rootlets, and were concentrated on the root hairs. -
Hybridization of the California Firs
Forest Science, Vol. 34, No. I, pp. 139-151. Copyright 1988 by the Society of American Foresters Hybridization of the California Firs William B. Critchfield Abstract. Four groups of firs (sections, in the most recent classification of Abies) are represented in California. Crossing within these sections is possible and even easy, and in two of the sections intergrading populations between highly crossable taxa are wide spread in California. An exception is A. amabilis, a Northwestern fir that has not been crossed with other species in the same section {Grandes: A. concolor, A. grandis) or in other sections (e.g., Nobiles: A magnified). Crossing species in different sections is usually difficult or impossible. The genetic isolation of A. bracteata, an endemic species classified as a monotypic subgenus or section, may be nearly complete: two probable hybrids with A. concolor died at a few years of age. A few putative hybrids from inter- sectional crosses between species in Grandes and Nobiles died within months of germi nation. Intersectional crosses with firs outside California (two Mexican and four Eur asian species) all failed except A. concolor x A. religiosa, which produced numerous healthy hybrids. The common occurrence of genetic barriers in Abies is at odds with the long-held view that it is easy to hybridize fir species. For. Sci. 34(1): 139-151. Additional key words. Abies, interspecific hybrids, crossability, classification. The ability of species to hybridize has not been explored as systemati cally in the genus Abies (true firs) as it has in other genera of Pinaceae such as Pinus and Pice a. -
Chamaecyparis Lawsoniana in Europe: Distribution, Habitat, Usage and Threats
Chamaecyparis lawsoniana Chamaecyparis lawsoniana in Europe: distribution, habitat, usage and threats T. Houston Durrant, G. Caudullo The conifer Lawson cypress (Chamaecyparis lawsoniana (A. Murray) Parl.) is native to a small area in North America. Variable in form, there are over 200 cultivars selected for horticultural purposes. It has been planted in many countries in Europe, usually as an ornamental, although the timber is also of good quality. It has been severely affected in its native range by root rot disease, and this has now spread to the European population. Chamaecyparis lawsoniana (A. Murray) Parl., known as Lawson cypress, or Port Orford cedar in the United States, is a Frequency large conifer native to North America. It belongs to the family < 25% 25% - 50% Cupressaceae, and is sometimes referred to as a “false-cypress” 50% - 75% to distinguish it from other cypresses in the family. It is long- > 75% lived (more than 600 years) and can reach heights of up to 50 m (exceptionally up to 70 m in its native range) and a diameter exceeding 2 m1, 2. The tree is narrowly columnar with slender, down-curving branches; frequently with forked stems. The bark is silvery-brown, becoming furrowed and very thick with age giving mature trees good fire resistance2, 3. The wood is highly aromatic with a distinctive ginger-like odour, as is the foliage which has a parsley-like scent when crushed3, 4. The evergreen scale-like leaves are around 2-3 mm long5. Abundant, round pea-sized cones ripen in autumn with seed dispersal occurring immediately after and continuing until the following spring6. -
DOI 10.5073Jkidpp.2012.002
2012, 2 ISSN 2191-138X DOI 10.5073/jkidpp.2012.002 JKI Datenblätter Pfl anzenkrankheiten und Diagnose Sabine Werres / Stefan Wagner Phytophthora lateralis Tucker & Milbrath (1942) Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpfl anzen Impressum Die Open-Access-Publikationsreihe „JKI Datenblätter – Pfl anzenkrankheiten und Diagnose“ beinhaltet deutschsprachige Originalbeiträge, Beschreibungen, Erkenntnisse und Berichte zu allen biotischen und abiotischen Ursachen von Krankheiten und Schädigungen der Kulturpfl anzen. Die Reihe ist ebenfalls in englischer Sprache verfügbar als “JKI Data Sheets – Plant Diseases and Diagnosis“. Alle Beiträge, die in den JKI Datenblättern zur Veröff entlichung eingereicht werden, werden von mindes- tens zwei unabhängigen Gutachtern blind begutachtet. Die Beiträge werden unter einen Creative-Commons-Lizenz bereit gestellt. Sie können unter Nennung von Autor und Quelle die Dokumente ohne Gebühr nutzen, teilen und weiter verbreiten, solange Sie keine kommerziellen Ziele damit verfolgen und die Werke nicht verändern. Herausgeber/Editor-in-Chief: Dr. Georg F. Backhaus, Präsident und Professor Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpfl anzen Erwin-Baur-Str. 27 06484 Quedlinburg Redaktion/Schriftleitung: Dr. Olaf Hering, Informationszentrum und Bibliothek Julius Kühn-Institut Königin-Luise-Str. 19 14195 Berlin E-Mail: [email protected] Einreichung von Beiträgen: Über die Internetseite http://pub.jki.bund.de/ ISSN: 2191-138X DOI 10.5073/jkidpp.2012.002 JKI Datenblätter - Pfl anzenkrankheiten und Diagnose 3 Sabine Werres / Stefan Wagner - Phytophthora lateralis Tucker & Milbrath (1942); 2012, 2 ; DOI 10.5073/jkidpp.2012.002 Status EPPO A2 List (http://www.eppo.int/QUARANTINE/listA2.htm) 2011 wurde die Gefährlichkeit von P. lateralis herabgestuft, und der Erreger von der EPPO A1 List (EPPO Reporting Service 2009/09) in die EPPO A2 List verschoben (EPPO Reporting Service 2011/187).