Nuclear Factor One Transcription Factors in CNS Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KLF2 Induced
UvA-DARE (Digital Academic Repository) The transcription factor KLF2 in vascular biology Boon, R.A. Publication date 2008 Link to publication Citation for published version (APA): Boon, R. A. (2008). The transcription factor KLF2 in vascular biology. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Supplementary data: Genes induced by KLF2 Dekker et al. LocusLink Accession Gene Sequence Description Fold p-value ID number symbol change (FDR) 6654 AK022099 SOS1 cDNA FLJ12037 fis, clone HEMBB1001921. 100.00 5.9E-09 56999 AF086069 ADAMTS9 full length insert cDNA clone YZ35C05. 100.00 1.2E-09 6672 AF085934 SP100 full length insert cDNA clone YR57D07. 100.00 6.7E-13 9031 AF132602 BAZ1B Williams Syndrome critical region WS25 mRNA, partial sequence. -
A Cell-Type-Specific Transcriptional Network Required for Estrogen Regulation of Cyclin D1 and Cell Cycle Progression in Breast Cancer
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer Jérôme Eeckhoute, Jason S. Carroll, Timothy R. Geistlinger, Maria I. Torres-Arzayus, and Myles Brown1 Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA Estrogen stimulates the proliferation of the most common type of human breast cancer that expresses estrogen receptor ␣ (ER␣) through the activation of the cyclin D1 (CCND1) oncogene. However, our knowledge of ER␣ transcriptional mechanisms remains limited. Hence, it is still elusive why ER␣ ectopically expressed in ER-negative breast cancer cells (BCC) is functional on ectopic reporter constructs but lacks activity on many endogenous target genes, including CCND1. Here, we show that estradiol (E2) stimulation of CCND1 expression in BCC depends on a novel cell-type-specific enhancer downstream from the CCND1 coding region, which is the primary ER␣ recruitment site in estrogen-responsive cells. The pioneer factor FoxA1 is specifically required for the active chromatin state of this enhancer and as such is crucial for both CCND1 expression and subsequent cell cycle progression. Interestingly, even in BCC, CCND1 levels and proliferation are tightly controlled by E2 through the establishment of a negative feedforward loop involving the induction of NFIC, a putative tumor suppressor capable of directly repressing CCND1 transcription. Taken together, our results reveal an estrogen-regulated combinatorial network including cell-specific cis- and trans-regulators of CCND1 expression where ER␣ collaborates with other transcription factors associated with the ER-positive breast cancer phenotype, including FoxA1 and NFIC. -
Transcriptional Regulatory Networks in Neocortical Development
Review From trans to cis: transcriptional regulatory networks in neocortical development 1 1 1,2 Mikihito Shibata , Forrest O. Gulden , and Nenad Sestan 1 Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA 2 Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA Transcriptional mechanisms mediated by the binding of tions among TFs and CREs form the central core of tran- transcription factors (TFs) to cis-acting regulatory ele- scriptional regulatory networks (TRNs) (Box 1) [1]. ments (CREs) in DNA play crucial roles in directing gene Interactions between TFs and CREs are complex, dynam- expression. While TFs have been extensively studied, ic,andmodulatedbyvariousepigeneticprocesses[12].While less effort has gone towards the identification and func- individual CREs may be regulated by the competitive or tional characterization of CREs and associated epigenet- cooperative binding of many TFs, multiple CREs may also ic modulation. However, owing to methodological and confer transcriptional control over the expression of any analytical advances, more comprehensive studies of single gene [12]. Furthermore, TFs and CREs regulate regulatory elements and mechanisms are now possible. transcription together with their cognate transcriptional We summarize recent progress in integrative analyses of cofactors, chromatin regulators, epigenetic modifications, these regulatory components in the development of the RNA-binding proteins, and non-coding RNAs [2,13]. This cerebral neocortex, the part of the brain involved in combinatorial and multi-level transcriptional regulation cognition and complex behavior. These studies are greatly increases the complexity of gene expression regula- uncovering not only the underlying transcriptional reg- tion, facilitating the unique spatio-temporal patterns nec- ulatory networks, but also how these networks are essary for tissue development and function [3]. -
Consideration of Layer-Specific Marker Expression
Cerebral Cortex March 2011;21:588--596 doi:10.1093/cercor/bhq125 Advance Access publication July 12, 2010 Neocortical Layer Formation of Human Developing Brains and Lissencephalies: Consideration of Layer-Specific Marker Expression Takashi Saito1,2, Sae Hanai1,2, Sachio Takashima3, Eiji Nakagawa2, Shin Okazaki4, Takeshi Inoue5, Rie Miyata6, Kyoko Hoshino7, Takumi Akashi8, Masayuki Sasaki2, Yu-ichi Goto1, Masaharu Hayashi6 and Masayuki Itoh1 1Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan, 2Department of Child Neurology, The Hospital of National Center of Neurology and Psychiatry, Kodaira, 187-8551, Japan, 3Yanagawa Institute of Handicapped Children, International University of Health and Welfare, Fukuoka, 832-0058, Japan, 4Department of Pediatrics, Osaka City General Hospital, Osaka, 534-0021, Japan, 5Department of Pathology and Laboratory Medicine, Osaka City General Hospital, Osaka, 534-0021, Japan, 6Department of Clinical Neuropathology, Tokyo Metropolitan Institute of Neuroscience, Fuchu, 183-8526, Japan, 7Department of Pediatrics, Saitama Medical Center, Kawagoe, 350-8550, Japan and 8Department of Pathology and Laboratory Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan Takashi Saito and Masayuki Itoh have contributed equally to this work. Downloaded from Address correspondence to M Itoh, Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan. Email: [email protected]. To investigate layer-specific molecule expression in human de- each layer has a specific function with a synaptic connection. veloping neocortices, we performed immunohistochemistry of the In each step, specific genes have important roles, and the http://cercor.oxfordjournals.org/ layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and molecular mechanism is well known in rodent brains (Arlotta CTIP2), using frontal neocortices of the dorsolateral precentral gyri et al. -
Integrative Bulk and Single-Cell Profiling of Premanufacture T-Cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-Cell Therapy
Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 RESEARCH ARTICLE Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy Gregory M. Chen1, Changya Chen2,3, Rajat K. Das2, Peng Gao2, Chia-Hui Chen2, Shovik Bandyopadhyay4, Yang-Yang Ding2,5, Yasin Uzun2,3, Wenbao Yu2, Qin Zhu1, Regina M. Myers2, Stephan A. Grupp2,5, David M. Barrett2,5, and Kai Tan2,3,5 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 ABSTRACT The adoptive transfer of chimeric antigen receptor (CAR) T cells represents a breakthrough in clinical oncology, yet both between- and within-patient differences in autologously derived T cells are a major contributor to therapy failure. To interrogate the molecular determinants of clinical CAR T-cell persistence, we extensively characterized the premanufacture T cells of 71 patients with B-cell malignancies on trial to receive anti-CD19 CAR T-cell therapy. We performed RNA-sequencing analysis on sorted T-cell subsets from all 71 patients, followed by paired Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on T cells from six of these patients. We found that chronic IFN signaling regulated by IRF7 was associated with poor CAR T-cell persistence across T-cell subsets, and that the TCF7 regulon not only associates with the favorable naïve T-cell state, but is maintained in effector T cells among patients with long-term CAR T-cell persistence. -
Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated
Published OnlineFirst March 12, 2019; DOI: 10.1158/0008-5472.CAN-18-2849 Cancer Metabolism and Chemical Biology Research Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling Zeynep Madak-Erdogan1,2,3,4,5,6, Shoham Band1,YiruC.Zhao1, Brandi P. Smith1, Eylem Kulkoyluoglu-Cotul1, Qianying Zuo1, Ashlie Santaliz Casiano2, Kinga Wrobel1, Gianluigi Rossi7, Rebecca L. Smith7, Sung Hoon Kim8, John A. Katzenellenbogen8, Mariah L. Johnson9, Meera Patel9, Natascia Marino9,10, Anna Maria V. Storniolo9,10, and Jodi A. Flaws11 Abstract Obesity is a risk factor for postmenopausal estrogen recep- naling, was able to block changes induced by FFA and was þ tor alpha (ERa)-positive (ER ) breast cancer. Molecular more effective in the presence of FFA. Collectively, these data mechanisms underlying factors from plasma that contribute suggest a role for obesity-associated gene and metabolic rewir- þ to this risk and how these mechanisms affect ERa signaling ing in providing new targetable vulnerabilities for ER breast have yet to be elucidated. To identify such mechanisms, we cancer in postmenopausal women. Furthermore, they provide performed whole metabolite and protein profiling in plasma a basis for preclinical and clinical trials where the impact of samples from women at high risk for breast cancer, which led agents that target ERa and mTOR signaling cross-talk would be þ us to focus on factors that were differentially present in plasma tested to prevent ER breast cancers in obese postmenopausal of obese versus nonobese postmenopausal women. These women. studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with Significance: These findings show that obesity-associated þ increased proliferation and aggressiveness in ER breast cancer changes in certain blood metabolites rewire metabolic pro- cells. -
A Novel NFIX-STAT6 Gene Fusion in Solitary Fibrous Tumor: a Case Report
International Journal of Molecular Sciences Article A Novel NFIX-STAT6 Gene Fusion in Solitary Fibrous Tumor: A Case Report David S. Moura 1 , Juan Díaz-Martín 1,2,3 , Silvia Bagué 4 , Ruth Orellana-Fernandez 4, Ana Sebio 5, Jose L. Mondaza-Hernandez 6 , Carmen Salguero-Aranda 1,2,3, Federico Rojo 7, Nadia Hindi 6,8,9, Christopher D. M. Fletcher 10,11 and Javier Martin-Broto 6,8,9,* 1 Institute of Biomedicine of Seville (IBiS, CSIC, HUVR, US), 41013 Seville, Spain; [email protected] (D.S.M.); [email protected] (J.D.-M.); [email protected] (C.S.-A.) 2 Pathology Department, Hospital Virgen del Rocío, 41013 Sevilla, Spain 3 Centro de Investigación Biomédica en Red del Cáncer (CIBERONC), 28029 Madrid, Spain 4 Pathology Department–CIBERONC, Sant Pau Hospital, 08041 Barcelona, Spain; [email protected] (S.B.); [email protected] (R.O.-F.) 5 Medical Oncology Department, Sant Pau Hospital, 08041 Barcelona, Spain; [email protected] 6 Fundacion Jimenez Diaz University Hospital Health Research Institute (IIS/FJD), 28015 Madrid, Spain; [email protected] (J.L.M.-H.); [email protected] (N.H.) 7 Pathology Department, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain; [email protected] 8 Medical Oncology Department, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain 9 General de Villalba University Hospital, 28400 Madrid, Spain 10 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA; cfl[email protected] 11 Citation: Moura, D.S.; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA Díaz-Martín, J.; Bagué, S.; * Correspondence: [email protected]; Tel.: +34-95-540-2246 Orellana-Fernandez, R.; Sebio, A.; Mondaza-Hernandez, J.L.; Abstract: Solitary fibrous tumor is a rare subtype of soft-tissue sarcoma with a wide spectrum of Salguero-Aranda, C.; Rojo, F.; histopathological features and clinical behaviors, ranging from mildly to highly aggressive tumors. -
“The Transcription Factor NFIX As a Novel Modulator of Heart Rate.”
PhD course of Integrated Biomedical Research Cycle XXXI BIO-09 “The transcription factor NFIX as a novel modulator of heart rate.” Sara Landi R11322 Tutor: Prof. Andrea Francesco Barbuti PhD Course Coordinator: Prof. Chiarella Sforza 2017/2018 1 Summary Abstract .................................................................................................. 4 Introduction .......................................................................................... 6 1. The transcription factor NFIX. ........................................................ 6 2. Heart development. ........................................................................ 13 3. The Heart. ...................................................................................... 18 I. The Working Myocardium. ......................................................... 18 II. The Conduction System .............................................................. 18 4. The Cardiac Action Potential. ........................................................ 24 5. HCN Channels. .............................................................................. 27 6. L-type Calcium Channels. .............................................................. 32 Aim ......................................................................................................... 37 Materials and methods ..................................................................... 38 1. Statistical Analysis ......................................................................... 38 2. Mouse model ................................................................................. -
Roles of the NFI/CTF Gene Family in Transcription and Development
Gene 249 (2000) 31–45 www.elsevier.com/locate/gene Review Roles of the NFI/CTF gene family in transcription and development Richard M. Gronostajski * Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Biochemistry, 9500 Euclid Ave., Case Western Reserve University, Cleveland, OH 44195, USA Received 20 December 1999; received in revised form 15 February 2000; accepted 13 March 2000 Received by A.J. van Wijnen Abstract The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X ), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are diVerentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes diVer in their abilities to either activate or repress transcription, likely through fundamentally diVerent mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development. © 2000 Elsevier Science B.V. All rights reserved. Keywords: CAAT box transcription factor; Cancer; CTD; Gene expression; Nuclear Factor I 1. Introduction 2. Discovery of viral and cellular NFI-binding sites The Nuclear Factor I (NFI) family of site-specific After the initial observation that NFI protein isolated DNA-binding proteins plays wide reaching roles in from nuclear extracts of human HeLa cells greatly animal physiology, biochemistry and pathology. -
Integrated Computational Approach to the Analysis of RNA-Seq Data Reveals New Transcriptional Regulators of Psoriasis
OPEN Experimental & Molecular Medicine (2016) 48, e268; doi:10.1038/emm.2016.97 & 2016 KSBMB. All rights reserved 2092-6413/16 www.nature.com/emm ORIGINAL ARTICLE Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis Alena Zolotarenko1, Evgeny Chekalin1, Alexandre Mesentsev1, Ludmila Kiseleva2, Elena Gribanova2, Rohini Mehta3, Ancha Baranova3,4,5,6, Tatiana V Tatarinova6,7,8, Eleonora S Piruzian1 and Sergey Bruskin1,5 Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide novel insights into the regulatory molecular mechanisms of the disease, we performed RNA sequencing analysis of 14 pairs of skin samples collected from patients with psoriasis. Subsequent pathway analysis and extraction of the transcriptional regulators governing psoriasis-associated pathways was executed using a combination of the MetaCore Interactome enrichment tool and the cisExpress algorithm, followed by comparison to a set of previously described psoriasis response elements. A comparative approach allowed us to identify 42 core transcriptional regulators of the disease associated with inflammation (NFκB, IRF9, JUN, FOS, SRF), the activity of T cells in psoriatic lesions (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1), the hyper- proliferation and migration of keratinocytes (JUN, FOS, NFIB, TFAP2A, TFAP2C) and lipid metabolism (TFAP2, RARA, VDR). In addition to the core regulators, we identified 38 transcription factors previously not associated with the disease that can clarify the pathogenesis of psoriasis. To illustrate these findings, we analyzed the regulatory role of one of the identified transcription factors (TFs), FOXA1. Using ChIP-seq and RNA-seq data, we concluded that the atypical expression of the FOXA1 TF is an important player in the disease as it inhibits the maturation of naive T cells into the (CD4+FOXA1+CD47+CD69+PD-L1(hi) FOXP3 − ) regulatory T cell subpopulation, therefore contributing to the development of psoriatic skin lesions. -
An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity
International Journal of Molecular Sciences Review An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity 1, 1, 1 2 Elena Masini y, Eleonora Loi y, Ana Florencia Vega-Benedetti , Marinella Carta , Giuseppe Doneddu 3, Roberta Fadda 4 and Patrizia Zavattari 1,* 1 Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; [email protected] (E.M.); [email protected] (E.L.); [email protected] (A.F.V.-B.) 2 Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy; [email protected] 3 Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy; [email protected] 4 Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; [email protected] * Correspondence: [email protected] The authors contributed equally to this work. y Received: 30 September 2020; Accepted: 30 October 2020; Published: 5 November 2020 Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. -
Haploinsufficiency of Autism Causative Gene Tbr1 Impairs Olfactory
Huang et al. Molecular Autism (2019) 10:5 https://doi.org/10.1186/s13229-019-0257-5 RESEARCH Open Access Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice Tzyy-Nan Huang1†, Tzu-Li Yen1†, Lily R. Qiu2, Hsiu-Chun Chuang1,4, Jason P. Lerch2,3 and Yi-Ping Hsueh1* Abstract Background: Autism spectrum disorders (ASD) exhibit two clusters of core symptoms, i.e., social and communication impairment, and repetitive behaviors and sensory abnormalities. Our previous study demonstrated that TBR1, a causative gene of ASD, controls axonal projection and neuronal activation of amygdala and regulates social interaction and vocal communication in a mouse model. Behavioral defects caused by Tbr1 haploinsufficiency can be ameliorated by increasing neural activity via D-cycloserine treatment, an N-methyl-D-aspartate receptor (NMDAR) coagonist. In this report,weinvestigatetheroleofTBR1inregulatingolfaction and test whether D-cycloserine can also improve olfactory defects in Tbr1 mutant mice. Methods: We used Tbr1+/− mice as a model to investigate the function of TBR1 in olfactory sensation and discrimination of non-social odors. We employed a behavioral assay to characterize the olfactory defects of Tbr1+/− mice. Magnetic resonance imaging (MRI) and histological analysis were applied to characterize anatomical features. Immunostaining was performed to further analyze differences in expression of TBR1 subfamily members (namely TBR1, TBR2, and TBX21), interneuron populations, and dendritic abnormalities in olfactory bulbs. Finally, C-FOS staining was used to monitor neuronal activation of the olfactory system upon odor stimulation. Results: Tbr1+/− mice exhibited smaller olfactory bulbs and anterior commissures, reduced interneuron populations, and an abnormal dendritic morphology of mitral cells in the olfactory bulbs.