Impact of Emamectin Benzoate 5% SG on Arthropod Biodiversity in Bhendi

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Emamectin Benzoate 5% SG on Arthropod Biodiversity in Bhendi Journal of Entomology and Zoology Studies 2017; 5(1): 847-855 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(1): 847-855 Impact of emamectin benzoate 5% SG on © 2017 JEZS arthropod biodiversity in bhendi ecosystem Received: 24-11-2016 Accepted: 25-12-2016 A Kuzhandhaivel Pillai A Kuzhandhaivel Pillai, M Ganesh Kumar, S Kuttalam, K Gunasekaran Assistant Professor, Don Bosco and SV Krishnamurthy College of Agriculture, Sagayathottam, Takkolam, Vellore, Tamil Nadu, India Abstract A field experiment was conducted to assess the impact of emamectin benzoate 5% SG on arthropod M Ganesh Kumar diversity in bhendi during March-May, 2014 in Coimbatore. Two rounds of a spray of emamectin Professor (Retd.), Department of benzoate 5% SG were given at fourteen days interval starting from 38 days after sowing (DAS). In other Agricultural Entomology, Tamil hand an unsprayed field was maintained. The sampling of arthropods were made using four different Nadu Agricultural University, methods viz., active searching, net sweeping, pitfall trap and rubbish trap. The collected arthropods were Coimbatore, Tamil Nadu, India sorted out, identified to the lowest possible taxon and the biodiversity indices were estimated. A total of S Kuttalam 4093 individuals belonging to 63 species, 43 families and 11 orders in both sprayed and unsprayed okra Former Professor and Head, field were collected. The unsprayed okra field recorded a total of 2388 individuals, whereas sprayed field Department of Agricultural recorded a total of 1705 individuals. The class Insecta (51 species) was the most dominant followed by Entomology, Tamil Nadu Arachnida (12 species). In Insecta, exopterygota were represented by four orders and endopterygota were Agricultural University, represented by five orders. Spiders belonging to eleven species, nine genera and six families were Coimbatore. Tamil Nadu, India recorded. The family Lycosidae (104 individuals) was found to be dominant followed by Salticidae (85 individuals). Family Lycosidae was represented by two species viz., Lycosa sp. and Pardosa birmanica K Gunasekaran Simon. The biodiversity indices were worked out, and the alpha diversity indices viz., Species richness Professor and Head, Department indices (Species number, Fishers’ alpha index and Shannon-Weiner index), species dominance index of Plant Protection, ADAC & RI (Simpson’s index) and evenness index revealed that maximum value were recorded in unsprayed fields (TNAU), Trichy, Tamil Nadu, than sprayed fields especially at the time of spraying and the population increased two weeks after the India spray. The comparison of beta diversity in sprayed and unsprayed fields, indicated that, based on ordinal, familial, generic and species level, all the indices values were higher in sprayed field than the unsprayed SV Krishnamurthy Professor and Head, Department field. Higher arthropod diversity recorded in unsprayed field than the sprayed field. of Sericulture, Forest College and Research Institute (TNAU), Keywords: Emamectin benzoate, impact, arthropod biodiversity, bhendi Mettupalayam, Tamil Nadu, India Introduction Okra [Abelmoschus esculentus (L.) Moench] has a special status in the field of nutrition among vegetables. In India, it is cultivated in an area of 530000 ha, with a production of 6.35 million -1 tons and productivity of 12 tons ha . Okra is cultivated in almost all states of India and the major producing states are Andhra Pradesh, West Bengal, Bihar, Gujarat, Odisha, Karnataka and Tamil Nadu [1]. Besides various reasons for low productivity, heavy damage to fruits inflicted by Helicoverpa armigera (Hubner) and Earias sp., which reduces vitality of the plant [2] [3] resulting in 54.04 per cent net yield loss . Ewete has reported 72 insect species that attack and damage okra. A total of 26 herbivores belonging to 24 genera, 20 families, and five orders and 23 predator insect species belonging to 21 genera, 11 families and seven orders were observed from the okra ecosystem [4]. Among the various methods of pest management, the use of agrochemicals forms the first line of defense against the insect pests. Emamectin benzoate is a semi-synthetic derivative of avermectins, produced as fermentation metabolites of soil actinomycetes, Streptomyces avermitilis Burg. This was discovered in 1984 and has both stomach and contact action, being effective against lepidopteran pests. They are potent agonists at the GABA receptors and interact with glutamate-gated chloride channels in insect nervous system. The strong chloride ion influx into the nerve cells results in disruption of nerve impulses, paralysis and finally death of larvae [5]. Correspondence A Kuzhandhaivel Pillai Arthropods are frequently used as ecological indicators because they represent more than 80 Assistant Professor, Don Bosco per cent of the global species richness. They fulfill essential roles in the ecosystem such as College of Agriculture, pollination, soil structure and function, decomposition and nutrient recycling, natural enemies Sagayathottam, Takkolam, of pest species, prey for highly valued vertebrate, etc. [6]. They have short generation times and Vellore. Tamil Nadu, India respond quickly to ecological changes. ~ 847 ~ Journal of Entomology and Zoology Studies Further, various arthropod taxa have been used to detect an c. Pitfall traps anthropogenic impact on ecosystems including agriculture Pitfall traps were used to collect the ground dwelling and and climate change [7, 8]. Spiders (Arachnida: Araneae) are so nocturnal arthropods. Pitfall traps were set out using a plastic diverse arthropods that they have attained the seventh rank in container (15 cm height and 10 cm width) buried into the soil diversity [9] and are predaceous arthropods which largely feed to a depth of 20 cm. Five pitfall traps were placed in each of on insects, larvae, and eggs. The indiscriminate use of five randomly chosen 4 x 4 m quadrates. The traps were set insecticides in agro-ecosystems resulted in ecological up between 6 am and 5 pm and specimens were collected the imbalance and appearance of more resistant pest strains in next morning. In order to stop the receptacle from filling with crops. Favorable results can be achieved by using spiders and water or leaf litter and to deter some larger predators like other arthropods (including insects) as biological control mice, the trap was covered with a flat stone supported by four agents in combination with insecticides and restricting the smaller stones. The water with two to three drops of teepol number of their applications to only specific times so as to was kept in the traps as trapping fluid and fluid was changed protect them [10, 11]. every week. The traps were placed at the rate of 25 per plot. The ecofriendly method of insect pest management offers an Observations were pooled and presented as weekly data. adequate level of pest control with fewer hazards and safe to non-target organisms. In the present study, the impact of d. Rubbish traps emamectin benzoate 5% SG on arthropod diversity in bhendi Rubbish traps were constructed using chicken wire mesh, ecosystem were evaluated. stuffed with leaf litter (45 cm length and 15 cm width). Five rubbish traps were Materials and Methods placed in each of five randomly chosen quadrates. The traps A field experiment was conducted to assess the impact of were placed in the field allowing a week for arthropods to emamectin benzoate 5% SG on arthropod population in take up residence. Every seven days, these traps were bhendi during March – 2014 to May – 2014 at farmer field, removed and brought to the laboratory to collect the Puthur, Coimbatore on the bhendi hybrid Venus. Two rounds arthropods found inside were collected. of a spray of emamectin benzoate 5% SG were given at fourteen days interval starting from 38 days after sowing 2. Collection and identification of arthropods (DAS). Spraying was done with hand operated pneumatic The collected arthropods were sorted out based on taxon. Soft knapsack sprayer using 500 liters of spray fluid per hectare. In bodied insects and spiders were preserved in 70 percent ethyl other hand an unsprayed field was maintained. alcohol in glass vials. Other arthropods were card mounted or pinned. All arthropod species were identified to the lowest 1. Sampling methods possible taxon. Insects were identified following Lefroy [12], To develop package of methods for quantitative sampling of Comstock [13], Richards and Davis [14], Ayyar [15], Poorani [16] arthropod communities, collections were made using four and also by comparing with the specimens in the different methods viz., active searching, net sweeping, pitfall Biosystematics Laboratory, Department of Agricultural trap and rubbish trap. For carrying out arthropod collection, Entomology, TNAU, Coimbatore. Spiders were identified the treated and untreated fields were divided into 100 with the help of Dr. M. Ganesh Kumar, Professor of quadrates (4 m x 4 m). Five such quadrates were chosen each Entomology, TNAU, Coimbatore and Dr. Manju Siliwal, at random and the entire site was covered during the sampling Independent Researcher, Wildlife Information Liaison period. Development Society, Dehradun. a. Active searching 3. Estimation of biodiversity indices Active searching was done in the early morning. Each I. Alpha diversity indices quadrate was selected at random were actively searched for Measures of diversity are indicators of the well-being of any arthropods. Each site was searched for a total of two hours. ecosystem. They also
Recommended publications
  • Eggplant Integrated Pest Management
    Eggplant Integrated Pest Management AN ECOLOGICAL GUIDE TRAINING RESOURCE TEXT ON CROP DEVELOPMENT, MAJOR AGRONOMIC PRACTICES, DISEASE AND INSECT ECOLOGY, INSECT PESTS, NATURAL ENEMIES AND DISEASES OF EGGPLANT FAO Inter-Country Programme for Integrated Pest Management In Vegetables in South and Southeast Asia June 2003 TABLE OF CONTENTS ACKNOWLEDGEMENTS WHY THIS GUIDE? .................................................................................................................................... 1 1 INTRODUCTION ..................................................................................................................................... 2 1.1 INTEGRATED PEST MANAGEMENT: BEYOND BUGS….......................................................................... 2 1.2 THE VEGETABLE IPM PROGRAMME .................................................................................................. 2 1.3 DEVELOPING VEGETABLE IPM BASED ON RICE IPM ........................................................................... 3 1.4 EGGPLANT: A BIT OF HISTORY........................................................................................................... 3 2 EGGPLANT CROP DEVELOPMENT..................................................................................................... 4 2.1 EGGPLANT GROWTH STAGES............................................................................................................ 5 2.2 SUSCEPTIBILITY OF EGGPLANT GROWTH STAGES TO PESTS ..............................................................
    [Show full text]
  • The Importance of Alternative Host Plants As Reservoirs of the Cotton Leaf Hopper, Amrasca Devastans, and Its Natural Enemies
    1 The importance of alternative host plants as reservoirs of the 2 cotton leaf hopper, Amrasca devastans, and its natural enemies 3 4 Rabia Saeeda, Muhammad Razaqb and Ian C.W. Hardyc 5 6 aEntomology Department, Central Cotton Research Institute, Multan, Pakistan 7 bDepartment of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin 8 Zakariya University, Multan, Pakistan 9 cSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, 10 UK 11 12 13 14 15 Correspondence to: 16 Dr Ian C.W. Hardy 17 School of Biosciences, University of Nottingham, Sutton Bonington Campus, 18 Loughborough, LE12 5RD, UK 19 20 Tel: +441159516052 21 Fax: +441159516261 22 Email: [email protected] 23 _____________________________________________ 24 Accepted 21-12-2-14 25 Saeed R, Razaq M & Hardy ICW 2015 The importance of alternative host plants as reservoirs 26 of the cotton leaf hopper, Amrasca devastans, and its natural enemies. Journal of Pest 27 Science 88:517-531 28 _____________________________________________ 29 1 30 31 Abstract 32 Many agricultural pests can be harboured by alternative host plants but these can also harbour 33 the pests’ natural enemies. We evaluated the capacity of non-cotton plant species (both 34 naturally growing and cultivated) to function as alternative hosts for the cotton leaf hopper 35 Amrasca devastans (Homoptera: Ciccadellidae) and its natural enemies. Forty eight species 36 harboured A. devastans. Twenty four species were true breeding hosts, bearing both nymphal 37 and adult A. devastans, the rest were incidental hosts. The crop Ricinus communis and the 38 vegetables Abelomoschus esculentus and Solanum melongena had the highest potential for 39 harbouring A.
    [Show full text]
  • Journaloffthreaftenedtaxa
    OPEN ACCESS All arfcles publfshed fn fhe Journal of Threafened Taxa are regfsfered under Creafve Commons Afrfbufon 4.0 Inferna - fonal Lfcense unless ofherwfse menfoned. JoTT allows unresfrfcfed use of arfcles fn any medfum, reproducfon and dfsfrfbufon by provfdfng adequafe credff fo fhe aufhors and fhe source of publfcafon. Journal of Threafened Taxa The fnfernafonal journal of conservafon and faxonomy www.fhreafenedfaxa.org ISSN 0974-7907 (Onlfne) | ISSN 0974-7893 (Prfnf) Shorf Communfcaffon An observaffon on fhe fruff feedfng behavfor of bufferflfes fn some areas of Bangladesh Tahsfnur Rahman Shfhan 26 Ocfober 2016 | Vol. 8 | No. 12 | Pp. 9479–9485 10.11609/jof.2519.8.12. 9479-9485 For Focus, Scope, Afms, Polfcfes and Gufdelfnes vfsff hfp://fhreafenedfaxa.org/Abouf_JoTT.asp For Arfcle Submfssfon Gufdelfnes vfsff hfp://fhreafenedfaxa.org/Submfssfon_Gufdelfnes.asp For Polfcfes agafnsf Scfenffc Mfsconducf vfsff hfp://fhreafenedfaxa.org/JoTT_Polfcy_agafnsf_Scfenffc_Mfsconducf.asp For reprfnfs confacf <[email protected]> Publfsher/Hosf Parfner Threafened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2016 | 8(12): 9479–9485 An observation on the fruit feeding behavior of butterflies in some areas of Bangladesh ISSN 0974-7907 (Online) Tahsinur Rahman Shihan Communication Short ISSN 0974-7893 (Print) Founder, Butterfly Flocks, Belgachi Railgate Para, Chuadanga 7200, Bangladesh [email protected] OPEN ACCESS Abstract: Very little information has been found about the behavior Bonebrake et al. 2010). of fruit feeding butterflies in Bangladesh. So this was an attempt to Fruit feeding butterflies are usually attracted to know about the fruit feeding behavior of butterflies from different areas of Bangladesh. The study was conducted during June 2014 to the volatiles produced by the fermentation process of September 2015.
    [Show full text]
  • Selection of Housekeeping Genes and Demonstration of Rnai in Cotton Leafhopper
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 1-12-2018 Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida) Satnam Singh Punjab Agricultural University, India Mridula Gupta Punjab Agricultural University, India Suneet Pandher Punjab Agricultural University, India Gurmeet Kaur Punjab Agricultural University, India Pankaj Rathore Punjab Agricultural University, India See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons, and the Genetics and Genomics Commons Repository Citation Singh, Satnam; Gupta, Mridula; Pandher, Suneet; Kaur, Gurmeet; Rathore, Pankaj; and Palli, Subba Reddy, "Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida)" (2018). Entomology Faculty Publications. 155. https://uknowledge.uky.edu/entomology_facpub/155 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur, Pankaj Rathore, and Subba Reddy Palli Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida) Notes/Citation Information Published in PLOS ONE, v. 13, no. 1, e0191116, p. 1-21. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
    [Show full text]
  • FOURTH UPDATE to a CHECKLIST of the LEPIDOPTERA of the BRITISH ISLES , 2013 1 David J
    Ent Rec 133(1).qxp_Layout 1 13/01/2021 16:46 Page 1 Entomologist’s Rec. J. Var. 133 (2021) 1 FOURTH UPDATE TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES , 2013 1 DAvID J. L. A GASSIz , 2 S. D. B EAvAN & 1 R. J. H ECkFoRD 1 Department of Life Sciences, Division of Insects, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF Abstract This update incorporates information published since 30 November 2019 and before 1 January 2021 into A Checklist of the Lepidoptera of the British Isles, 2013. Introduction The Checklist of the Lepidoptera of the British Isles has previously been amended (Agassiz, Beavan & Heckford 2016a, 2016b, 2019 and 2020). This update details 4 species new to the main list and 3 to Appendix A. Numerous taxonomic changes are incorporated and country distributions are updated. CENSUS The number of species now recorded from the British Isles stands at 2,558 of which 58 are thought to be extinct and in addition there are 191 adventive species. ADDITIONAL SPECIES in main list Also make appropriate changes in the index 15.0715 Phyllonorycter medicaginella (Gerasimov, 1930) E S W I C 62.0382 Acrobasis fallouella (Ragonot, 1871) E S W I C 70.1698 Eupithecia breviculata (Donzel, 1837) Rusty-shouldered Pug E S W I C 72.089 Grammodes bifasciata (Petagna, 1786) Parallel Lines E S W I C The authorship and date of publication of Grammodes bifasciata were given by Brownsell & Sale (2020) as Petagan, 1787 but corrected to Petagna, 1786 by Plant (2020).
    [Show full text]
  • Grammodes Bifasciata (Petagna, 1787) I Utetheisa Pulchella (Linnaeus
    Butll. Soc. Cat. Lep., 106: 125-126; 31.XII.2015 ISSN: 1132-7669 Grammodes bifasciata (Petagna, 1787) i Utetheisa pulchella (Linnaeus, 1758), dues espècies noves per a la Garrotxa, i noves citacions de Xanthia ocellaris (Borkhausen, 1789) Grammodes bifasciata (Petagna, 1787) and Utetheisa pulchella (Linnaeus, 1758), two new species for La Garrotxa, and new records of Xanthia ocellaris (Borkhausen, 1789) Eduard Guzmán Ronda Arraona, 81; E-08192 Sant Quirze del Vallès Key words: Erebidae, Noctuidae, Lepidoptera, La Garrotxa, Catalonia, Iberian Peninsula. En diverses publicacions (Bellavista 1985; Bellavista & Guzmán 2004; Guzmán 1994, 2013a, 2013b) s’ha anat completant el cens d’espècies de Noctuoidea i altres ma- croheteròcers coneguts de la comarca de la Garrotxa. En la present nota s’hi afegeixen dues espècies noves i s’aporten citacions d’una altra que feia molts anys que no s’hi detectava. Grammodes bifasciata (Petagna, 1787) Material estudiat. Garrotxa: Tortellà, riu Llierca (31TDG67, 200 m), 1 {, 8.IX.2015, 1 }, 22.IX.2015; Montagut de Fluvià, riu Llierca (31TDG67, 200 m), 1 {, 9.IX.2015, 3 {, 2 }, 21.IX.2015, 1 }, 23.IX.2015, 1 {, 3.X.2015. Espècie tropical que també colonitza els encontorns del Mediterrani, on es troba preferentment en zones de bosc xeròfil, ambients esteparis i dunes costaneres. A Catalu- nya és més freqüent observar-la en zones properes al litoral, però també hi ha citacions de localitats situades més a l’interior, com Vic, Susqueda, Montsant o Banyoles. Utetheisa pulchella (Linnaeus, 1758) Material estudiat. Garrotxa: Besalú (31TDG77, 168 m), 1 }, 25.IX.2015. Espècie subtropical amb una gran capacitat de dispersió pel seu comportament mi- gratori.
    [Show full text]
  • Seasonal Incidence of Sap Sucking Insect Pests of Cotton
    Indian Journal of Applied Entomology 28(1) : 46–49 (2014) SEASONAL INCIDENCE OF SAP SUCKING INSECT PESTS OF COTTON MAHENDRA PAL*, R. SWAMINATHAN AND O. P. AMETA Department of Entomology, Rajasthan College of Agriculture (MPUAT), Udaipur (Rajasthan) 313001 *[email protected] ABSTRACT A field experiment to record the seasonal incidence of sap sucking insect pests of cotton was carried out during May to November, 2012 at the Instructional Farm, Rajasthan College of Agriculture, Udaipur (Rajasthan). The study revealed that the incidence of sap sucking insect pests started at 26th SMW and the peak population of aphids (52.80 aphids/plant) and thrips (41.60 thrips/plant) was recorded in 41st and 40th SMW, respectively; whereas, the population of jassids and whitefly reached the peak with mean 19.80 jassids /plant and 31.87 whiteflies/plant during the 31st and 30th SMW, respectively. The jassid and whitefly population was significantly and positively correlated to mean atmospheric temperature and mean relative humidity. Aphid population was positively correlated to mean atmospheric temperature and mean relative humidity. The mean relative humidity had significant positive correlation with the population of thrips. Key words: Seasonal incidence, sap sucking insect pests, cotton. INTRODUCTION MATERIALS AND METHODS Cotton (Gossypium spp.), an important commercial The seasonal incidence of insect pests of cotton was crop in Indian agriculture, is cultivated in varied agro- studied for which an experiment was laid out in uniformly climatic conditions across nine major states of India sized plots measuring 5m × 5m replicated six times. Variety covering an area of 12.19 m ha with the production and GH-8 was grown under natural conditions in untreated productivity of 34.70 m bales and 484 kg per hectare, plots at 90cm x 90cm row to row and plant to plant spacing respectively.
    [Show full text]
  • Lepidoptera Fauna of Namibia. I. Seasonal Distribution of Moths of the Koakoland (Mopane) Savanna in Ogongo, Northern Namibia
    FRAGMENTA FAUNISTICA 57 (2): 117–129, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.117 Lepidoptera fauna of Namibia. I. Seasonal distribution of moths of the Koakoland (Mopane) Savanna in Ogongo, northern Namibia Grzegorz KOPIJ Department of Wildlife Management, University of Namibia, Katima Mulilio Campus, Private Bag 1096, Katima Mulilo, Namibia; e-mail: [email protected] Abstract: During the years 2011–2013, moths were collected in Koakoland (Mopane) Savanna in the Cuvelai Drainage System, Ovamboland, northern Namibia. In total, 77 species from 13 families have been identified. Their seasonal occurrence in this habitat was also investigated, with most species recorded in wet season between September and April, but with clear peak in February and March. The family Noctuidae was by far the most speciose (38 recorded species), followed by Crambidae (8 spp.), Sphingidae (6 spp.) and Arctiidae (4 spp.). All other families were represented by 1–3 species. For each species listed date of collection is given, and data on its global distribution. Key words: Lepidoptera, check-list, biodiversity, distribution, moths, Ovamboland INTRODUCTION According to recent quite precise estimate, there are 15 5181 species, 16 650 genera and 121 families of Lepidoptera worldwide (Pouge 2009). Lepidoptera fauna of Namibia has recently attracted attention of European entomologists. However, thorough surveys were conducted hitherto in a few areas only, such as Brandberg and Hobatere. The northern regions of the country were especially badly neglected. In southern Africa (south of Zambezi and Kunene Rivers) – 8 511 species, 2 368 genera and 89 families were recently catalogued (Vári et al.
    [Show full text]
  • Effect of Abiotic and Biotic Factors on Jassid and Fruit and Shoot Borer in Kharif Okra Crop J.B
    Effect of Abiotic and Biotic Factors on Jassid and Fruit and Shoot borer in kharif Okra Crop J.B. YADAV, R.S. SINGH, H.P. SINGH AND AANJANI KUMAR SINGH International Journal of Plant Protection, Vol. 2 No. 1 : 119-122 (April to September, 2009) See end of the article for SUMMARY authors’ affiliations The field density of Amrasca biguttula biguttula and Earias vittella along with their associated abiotic and biotic factors were observed in okra field at Kanpur. The incidence of jassid, Amrasca biguttula Correspondence to : biguttula began from July and fruit and shoot borer, Earias vittella from August and continued till J.B. YADAV Department of October. Among the parasitoids, Anagrus flaveolus associated with jassid and Trichogramma chilonis Entomology, C.S. Azad with E.vittella were the most important natural enemies. The percentage of parasitism of A.flaveolus University of ranged from 3 to 9 and of Trichogramma chilonis from 10 to 12 per cent. The data revealed a high Agriculture and positive relationship between the pest and parasitoids indicating an important role in suppressing pest Technology, KANPUR population to some extent. Predator, Chrysoperla carnea was recorded preying on nymph and adult of (U.P.) INDIA Amrasca biguttula biguttula. The abiotic factors were closely related with pest population. kra (Abelmoschus esculentus) is an enemies were recorded on five randomly Oimportant vegetable crop in India. It is selected plants from each replication. Immature attacked by a number of insect-pests, mites and stage of Earias vittella were collected from nematodes (Chaudhary and Dadheech, 1989). okra field on every observation date and reared Among these pests, the jassids and shoot and separately in laboratory to record the number fruits borer are the most important.The cost of of parasitoids emerging from them and to plant protection with chemical pesticide is very identify the parasitoids.
    [Show full text]
  • Promylea Lunigerella Glendella Dyar (Pyralidae) Feeds on Both Conifers
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Journal of the Lepidopterists' Society 57(1 ),2003,47-53 PROMYLEA LUNIGERELLA GLENDELLA DYAR (PYRALIDAE) FEEDS ON BOTH CONIFERS AND PARASITIC DWARF MISTLETOE (ARCEUTHOBIUM SPP.): ONE EXAMPLE OF FOOD PLANT SHIFTING BETWEEN PARASITIC PLANTS AND THEIR HOSTS KAlLEN A, MOONEY Department of EPO Riology, University of Colorado [Boulder 1. Boulder, Colorado 80309-0334, USA, Email: [email protected] ABSTRACT, Larvae of Pmmylea lunigerella glendella Dyar (Pyralidae, Phycitinae) feed on Arceuthohium vaginatum SU5p. cryptopodum (Hawks,) (Viscaceae), the Southwestern dwarf mistletoe, a parasite of Pinus ponderosa (Laws. ) scopulorllm (Pinaceae) at the Manitou Experi­ mental Forest, U,S,D.A, Rocky Mountain Research Station, Woodland Park, Colorado, A previous food plant record for P. lunigerella describes the laIvae as feeding on a variety of conifers. A careful evaluation of this record suggests it is reliable, and I conclude that P. lunigerella is actively shifting between dwarf mistletoe and conifer feeding, or has done 50 recently. My review of the literature on food plant use by lepidopteran her­ bivores of dwarf mistletoe and their relatives suggests that food plant shifts between parasitic plants and their hosts, and vice versa, have oc­ curred multiple times and may be common among taxa that fced on parasitic and parasitized plants. These findings support a model of food plant shifting in which the close proximity necessarily maintained by paraSitic plants and their hosts provides an ecological opportunity that fa­ cilitates food plant shifts between these taxonomically and chemically very dissimilar plants, Finally, I describe the life history of P.
    [Show full text]
  • Crop Diversification for Sustainable Insect Pest Management in Eggplant (Solanales: Solanaceae) G
    Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae) G. K. Sujayanand1,4,*, R. K. Sharma1, K. Shankarganesh1, Supradip Saha2 and R. S. Tomar3 Abstract An experiment was conducted to manage the eggplant (brinjal) shoot and fruit borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), the leafhopper Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae), and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) during kharif, the southwest monsoon season (Jul-Oct), in 2010 and 2011 at an experimental farm at the Division of Entomology, Indian Agricultural Research Institute, New Delhi. The experiment consisted of 7 different treatments with brinjal or eggplant ‘Pusa Kranti’, Solanum melongena L. (So- lanales: Solanaceae), as the main crop and coriander, marigold or mint as intercrops, along with a border crop (maize or cowpea) acting as refuge crops. Treatment T1 (maize as border crop and coriander as intercrop) harbored the smallest cumulative mean leafhopper population (6.90 insects per 3 leaves per plant) and the next to smallest mean whitefly population (9.64 insects per 3 leaves per plant) during monsoon season of 2010 and 2011. Treatment T3 (maize as border crop and marigold as intercrop) was second best in reducing the leafhopper population (7.27 insects per 3 leaves per plant), while it was the best treatment in reducing the whitefly population (8.36 insects per 3 leaves per plant). The sole crop (T7) harbored the largest whitefly (20.17 insects per 3 leaves per plant) and leafhopper (12.61 insects per 3 leaves per plant) populations among the 7 treatments. The lowest mean percentage fruit infestation was recorded from treatment T1 (by number: 27.72; by weight: 27.81).
    [Show full text]
  • Biodiversity of Insect Pest Complex Infesting Okra [Abelmoschus
    Journal of Entomology and Zoology Studies 2017; 5(5): 1968-1972 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Biodiversity of insect pest complex infesting okra JEZS 2017; 5(5): 1968-1972 © 2017 JEZS [Abelmoschus esculentus] in Tripura, N.E. India Received: 11-07-2017 Accepted: 12-08-2017 Navendu Nair Navendu Nair, U Giri, T Bhattacharjee, B Thangjam, N Paul and MR Department of Agriculture Debnath Entomology, College of Agriculture, Tripura, India Abstract U Giri Field experiments were conducted to study the biodiversity of insect pest species infesting okra in Department of Agronomy, Tripura during two seasons viz, summer (April to July, 2016) and winter (October, 2016 to January, College of Agriculture, Tripura, 2017). A total of twenty eight insect pest species belonging to 6 orders were found to infest this crop. India Maximum number of species were belonging to Hemiptera (12 nos.) followed by Lepidoptera (9 nos.) and Coleoptera (4 nos.). The Shannon and Wiener diversity index (H’) during summer and winter season T Bhattacharjee for the insect pest complex of okra was calculated as 1.01 and 0.91, respectively. The Simpson’s Department of Horticulture, diversity index (D) during summer and winter season was calculated as 0.14 and 0.19, respectively. College of Agriculture, Tripura, India These two indices for summer and winter season were more or less equal and exhibited a similar diversification. Similarly, Species Richness (7.31 and 7.49) and Species Evenness (0.71 and 0.64) during B Thangjam summer and winter season were more or less equal. However, by number the Leaf hopper (Amrasca Department of Agriculture biguttula biguttula ), Leaf beetle (Podagrica sp.), Blister beetle (Mylabris pustulata) and Leaf folder Entomology, College of (Syllepte derogata) were more abundant in the field during summer season where as, Leaf hopper Agriculture, Tripura, India (Amrasca biguttula biguttula), Aphid (Aphis gossypii), White fly (Bemisia tabaci) and Leaf folder (Syllepte derogata) were more abundant during winter season.
    [Show full text]