The Chloroplast Genomes of Bryopsis Plumosa And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Forensic and Phylogenetic Survey of Caulerpa Species
J. Phycol. 42, 1113–1124 (2006) r 2006 by the Phycological Society of America DOI: 10.1111/j.1529-8817.2006.0271.x A FORENSIC AND PHYLOGENETIC SURVEY OF CAULERPA SPECIES (CAULERPALES, CHLOROPHYTA) FROM THE FLORIDA COAST, LOCAL AQUARIUM SHOPS, AND E-COMMERCE: ESTABLISHING A PROACTIVE BASELINE FOR EARLY DETECTION1 Wytze T. Stam2 Jeanine L. Olsen Department of Marine Benthic Ecology and Evolution, Center for Ecological and Evolutionary Studies, Biological Centre, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands Susan Frisch Zaleski University of Southern California Sea Grant Program, 3616 Trousdale Parkway, Los Angeles, California 90089-0373, USA Steven N. Murray Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, California 92834-6850, USA Katherine R. Brown and Linda J. Walters Department of Biology, University of Central Florida, Orlando, Florida 32816, USA Baseline genotypes were established for 256 in- researchers interested in the evolution and speciat- dividuals of Caulerpa collected from 27 field loca- ion of Caulerpa. tions in Florida (including the Keys), the Bahamas, Key index words: aquarium trade; Caulerpa; e-com- US Virgin Islands, and Honduras, nearly doubling merce; invasive species; ITS; marine conservation; the number of available GenBank sequences. On the phylogeny; tufA basis of sequences from the nuclear rDNA-ITS 1 þ 2 and the chloroplast tufA regions, the phylogeny of Abbreviations: CTAB, cetyltrimethylammonium bro- Caulerpa was reassessed and the presence of inva- mide; ITS, internally transcribed spacer; MCMC, sive strains was determined. Surveys in central Flor- Markov chain Monte Carlo analysis ida and southern California of 4100 saltwater aquarium shops and 90 internet sites revealed that 450% sold Caulerpa. -
Supplementary Materials: Figure S1
1 Supplementary materials: Figure S1. Coral reef in Xiaodong Hai locality: (A) The southern part of the locality; (B) Reef slope; (C) Reef-flat, the upper subtidal zone; (D) Reef-flat, the lower intertidal zone. Figure S2. Algal communities in Xiaodong Hai at different seasons of 2016–2019: (A) Community of colonial blue-green algae, transect 1, the splash zone, the dry season of 2019; (B) Monodominant community of the red crust alga Hildenbrandia rubra, transect 3, upper intertidal, the rainy season of 2016; (C) Monodominant community of the red alga Gelidiella bornetii, transect 3, upper intertidal, the rainy season of 2018; (D) Bidominant community of the red alga Laurencia decumbens and the green Ulva clathrata, transect 3, middle intertidal, the dry season of 2019; (E) Polydominant community of algal turf with the mosaic dominance of red algae Tolypiocladia glomerulata (inset a), Palisada papillosa (center), and Centroceras clavulatum (inset b), transect 2, middle intertidal, the dry season of 2019; (F) Polydominant community of algal turf with the mosaic dominance of the red alga Hypnea pannosa and green Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2016; (G) Polydominant community of algal turf with the mosaic dominance of brown algae Padina australis (inset a) and Hydroclathrus clathratus (inset b), the red alga Acanthophora spicifera (inset c) and the green alga Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2019; (H) Sargassum spp. belt, transect 1, upper subtidal, the dry season of 2016. 2 3 Table S1. List of the seaweeds of Xiaodong Hai in 2016-2019. The abundance of taxa: rare sightings (+); common (++); abundant (+++). -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward. -
Successions of Phytobenthos Species in a Mediterranean Transitional Water System: the Importance of Long Term Observations
A peer-reviewed open-access journal Nature ConservationSuccessions 34: 217–246 of phytobenthos (2019) species in a Mediterranean transitional water system... 217 doi: 10.3897/natureconservation.34.30055 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations Antonella Petrocelli1, Ester Cecere1, Fernando Rubino1 1 Water Research Institute (IRSA) – CNR, via Roma 3, 74123 Taranto, Italy Corresponding author: Antonella Petrocelli ([email protected]) Academic editor: A. Lugliè | Received 25 September 2018 | Accepted 28 February 2019 | Published 3 May 2019 http://zoobank.org/5D4206FB-8C06-49C8-9549-F08497EAA296 Citation: Petrocelli A, Cecere E, Rubino F (2019) Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations. In: Mazzocchi MG, Capotondi L, Freppaz M, Lugliè A, Campanaro A (Eds) Italian Long-Term Ecological Research for understanding ecosystem diversity and functioning. Case studies from aquatic, terrestrial and transitional domains. Nature Conservation 34: 217–246. https://doi.org/10.3897/ natureconservation.34.30055 Abstract The availability of quantitative long term datasets on the phytobenthic assemblages of the Mar Piccolo of Taranto (southern Italy, Mediterranean Sea), a lagoon like semi-enclosed coastal basin included in the Italian LTER network, enabled careful analysis of changes occurring in the structure of the community over about thirty years. The total number of taxa differed over the years. Thirteen non-indigenous species in total were found, their number varied over the years, reaching its highest value in 2017. The dominant taxa differed over the years. -
Altitudinal Zonation of Green Algae Biodiversity in the French Alps
Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, Amélie Saillard, Wilfried Thuiller, Jean-Gabriel Valay, Eric Marechal, Eric Coissac To cite this version: Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, et al.. Altitu- dinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, Frontiers, 2021, 12, pp.679428. 10.3389/fpls.2021.679428. hal-03258608 HAL Id: hal-03258608 https://hal.archives-ouvertes.fr/hal-03258608 Submitted on 11 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-12-679428 June 4, 2021 Time: 14:28 # 1 ORIGINAL RESEARCH published: 07 June 2021 doi: 10.3389/fpls.2021.679428 Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart1,2,3, Delphine Rioux3, Fréderic Boyer3, Ludovic Gielly3, François Pompanon3, Amélie Saillard3, Wilfried Thuiller3, Jean-Gabriel Valay2, Eric Maréchal1* and Eric Coissac3* on behalf of The ORCHAMP Consortium 1 Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France, 2 Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France, 3 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France Mountain environments are marked by an altitudinal zonation of habitat types. -
New Phylogenetic Hypotheses for the Core Chlorophyta Based on Chloroplast Sequence Data
ORIGINAL RESEARCH ARTICLE published: 17 October 2014 ECOLOGY AND EVOLUTION doi: 10.3389/fevo.2014.00063 New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data Karolina Fucíkovᡠ1, Frederik Leliaert 2,3, Endymion D. Cooper 4, Pavel Škaloud 5, Sofie D’Hondt 2, Olivier De Clerck 2, Carlos F. D. Gurgel 6, Louise A. Lewis 1, Paul O. Lewis 1, Juan M. Lopez-Bautista 3, Charles F. Delwiche 4 and Heroen Verbruggen 7* 1 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 2 Phycology Research Group, Biology Department, Ghent University, Ghent, Belgium 3 Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA 4 Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA 5 Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic 6 School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA, Australia 7 School of Botany, University of Melbourne, Melbourne, VIC, Australia Edited by: Phylogenetic relationships in the green algal phylum Chlorophyta have long been subject to Debashish Bhattacharya, Rutgers, debate, especially at higher taxonomic ranks (order, class). The relationships among three The State University of New Jersey, traditionally defined and well-studied classes, Chlorophyceae, Trebouxiophyceae, and USA Ulvophyceae are of particular interest, as these groups are species-rich and ecologically Reviewed by: Jinling Huang, East Carolina important worldwide. Different phylogenetic hypotheses have been proposed over the University, USA past two decades and the monophyly of the individual classes has been disputed on Cheong Xin Chan, The University of occasion. -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected]. -
1986 De Paula & West Phycologia
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271076653 1986 de Paula & West Phycologia Data · January 2015 CITATIONS READS 0 32 2 authors, including: John A. West University of Melbourne 278 PUBLICATIONS 5,615 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Revision of the genera Sirodotia and Batrachospermum (Rhodophyta, Batrachospermales): sections Acarposporophytum, Aristata, Macrospora, Setacea, Turfosa and Virescentia View project Taxonomy and phylogeny of freshwater red algae View project All content following this page was uploaded by John A. West on 19 January 2015. The user has requested enhancement of the downloaded file. Phycologia (1986) Volume 25 (4), 482-493 Culture studies on Pedobesia ryukyuensis (Derbesiales, Chlorophyta), a new record in Brazil EDISON J. DE PAULA' AND JOHN A. WEST2 , Departamento de Botdnica et Centro de Biologia Marinha, Universidade de Siio Paulo, Caixa Postal 11461, Siio Paulo. SP, Brazil 2 Department of Botany, University of California, Berkeley, California 94720, USA E.J. DE PAULAAND J.A. WEST. 1986. Culture studies on Pedobesia ryukyuensis (Derbesiales, Chlorophyta), a new record in Brazil. Phycologia 25: 482-493. Pedobesia ryukyuensiswas collected in 1982 and 1983 from the Centro de Biologia Marinha (CEBIMAR), Sao Sebastiao, SP, Brazil and placed in unialgal culture. These isolates exhibit a direct sporophytic recycling life history typical of Pedobesia with three developmental stages: an encrusting calcified basal disc; branched rugose filaments arising from the base; and smooth filaments bearing sporangia. Comparisons of the Brazilian material with the known species of Pedobesia revealed the greatest morphological affinity with P. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
The Spread of the Native Macroalga Caulerpa Filiformis
University of Technology Sydney The spread of the native macroalga Caulerpa filiformis By Sofie Voerman A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy School of the Environment, Faculty of Science February 2017 CERTIFICATE OF ORIGINAL AUTHORSHIP I c ertify that the work in this thes is has not previous ly been s ubmitted for a degree nor has it been s ubmitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully ac knowledge d within the text. I als o certify that the thes is has been written by me. Any help that I have rec eived in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information s ourc es and literature us ed are indic ated in the thes is . S ignature of S tude nt: Date: Acknowledgements There are many people to thank who supported me along this journey. Without you this work would not have been possible. First and foremost, I owe my sincerest thanks to my primary advisor Paul Gribben. I am extremely grateful to Paul, in the first place to putting his trust in me and have me come over to this country. From day one, Paul has been incredibly supportive, pushing me to pursue paths with always my best interest in mind. Thank you for allowing me the freedom to pursue my ideas, and for always being there to back me up, no matter where they led. It was a privilege to be able to pick your brain on things, with your great knowledge on all things ecology, and inspiring views of “the bigger picture” on things. -
Bryopsis Hypnoides J.V.Lamouroux, 1809
Bryopsis hypnoides J.V.Lamouroux, 1809 AphiaID: 144452 . Plantae (Reino) > Viridiplantae (Subreino) > Chlorophyta (Filo) > Chlorophytina (Subdivisao) > Ulvophyceae (Classe) > Bryopsidales (Ordem) > Bryopsidaceae (Familia) © Vasco Ferreira © Vasco Ferreira Sinónimos Bryopsis hypnoides f. atlantica J.Agardh, 1887 Bryopsis hypnoides f. praelongata J.Agardh, 1887 Bryopsis hypnoides f. prolongata J.Agardh, 1887 Bryopsis hypnoides var. occidentalis Bryopsis monoica Funk, 1927 Referências original description Lamouroux, J.V.F. (1809). Observations sur la physiologie des algues marines, et description de cinq nouveaux genres de cette famille. Nouveau Bulletin des Sciences, par la Société Philomathique de Paris. 1(20): 330-333., available online at https://biodiversitylibrary.org/page/31775125 [details] additional source Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. , available online at http://www.algaebase.org [details] additional source Integrated Taxonomic Information System (ITIS). , available online at http://www.itis.gov [details] 1 basis of record Guiry, M.D. (2001). Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 20-38[details] additional source Sears, J.R. (ed.). 1998. NEAS keys to the benthic marine algae of the northeastern coast of North America from Long Island Sound to the Strait of Belle Isle. Northeast Algal Society. 163 p. [details] additional source South, G. R.;Tittley, I. (1986). A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. -
Algae Sheets-Invasive Elsewhere
ALGAE: NATIVE Caulerpa sertularioides (Gmel.) Howe 1905 C. sertularioides is a small delicate green alga found only in Oahu and Kauai. This species closely resembles C. taxifolia, the invasive killer weed of the Mediterranean. Division: Chlorophyta Class: Ulvophyceae Order: Bryopsidales Family: Caulerpaceae Genus: Caulerpa © L.Preskitt 2001 IDENTIFYING FEATURES HABITAT DESCRIPTION This delicate plant is usually found in warm, quiet waters in tide pools or on sandy, calm reef flats. It Branches, feather-like, flattened, and upright, 3 - 5 cm anchors to sandy bottoms or coral rubble by the creep- high, rising from a creeping stolon (runner), 1 - 2mm in ing rhizoids. diameter, anchored by rhizoids to the substrate. Branchlets oppositely attached to midrib, flattened, slightly curved upwards and tapered at both base and tip. Midrib is slightly flattened, appearing oval in cross-section. This species resembles another native Hawaiian Caulerpa species, C. taxifolia. C. sertularioides is more delicate and the branchlets are rounded, compared to the flattened branchlets of C. taxifolia. The rising branches are also more rounded toward apices, com- pared to the more angular, squared-off branches of C. taxifolia. © L.Preskitt 2001 COLOR Light green to yellow green. STRUCTURAL FEATURES Thallus non-septate, coenocytic, traversed by trabeculae, which are extensions of cell wall; reporduction vegeta- tive and sexual, latter anisogamous. Gametes liberated throug papillae that develop on frond or occasionally on frond. © Botany, University of Hawaii at Manoa 2001 A-45 Caulerpa sertularioides DISTRIBUTION REFERENCES HAWAII Abbott, I.A., 2001, unpublished manuscript. Northwest Hawaiian Islands, O‘ahu, Kaua‘i. Eubank, L.L., 1946. Hawaiian Representatives of the Genus Caulerpa.