Alluxio: a Virtual Distributed File System

Total Page:16

File Type:pdf, Size:1020Kb

Alluxio: a Virtual Distributed File System Alluxio: A Virtual Distributed File System Haoyuan Li Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-29 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.html May 7, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Acknowledgement I would like to thank my advisors, Ion Stoica and Scott Shenker, for their support and guidance throughout this journey, and for providing me with great opportunities. They are both inspiring mentors, and continue to lead by example. They always challenge me to push ideas and work further, and share their advice and experience on life and research. Being able to learn from both of them has been my great fortune. Alluxio: A Virtual Distributed File System by Haoyuan Li A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ion Stoica, Co-chair Professor Scott Shenker, Co-chair Professor John Chuang Spring 2018 Alluxio: A Virtual Distributed File System Copyright 2018 by Haoyuan Li 1 Abstract Alluxio: A Virtual Distributed File System by Haoyuan Li Doctor of Philosophy in Computer Science University of California, Berkeley Professor Ion Stoica, Co-chair Professor Scott Shenker, Co-chair The world is entering the data revolution era. Along with the latest advancements of the Inter- net, Artificial Intelligence (AI), mobile devices, autonomous driving, and Internet of Things (IoT), the amount of data we are generating, collecting, storing, managing, and analyzing is growing ex- ponentially. To store and process these data has exposed tremendous challenges and opportunities. Over the past two decades, we have seen significant innovation in the data stack. For exam- ple, in the computation layer, the ecosystem started from the MapReduce framework, and grew to many different general and specialized systems such as Apache Spark for general data processing, Apache Storm, Apache Samza for stream processing, Apache Mahout for machine learning, Ten- sorflow, Caffe for deep learning, Presto, Apache Drill for SQL workloads. There are more than a hundred popular frameworks for various workloads and the number is growing. Similarly, the storage layer of the ecosystem grew from the Apache Hadoop Distributed File System (HDFS) to a variety of choices as well, such as file systems, object stores, blob stores, key-value systems, and NoSQL databases to realize different tradeoffs in cost, speed and semantics. This increasing complexity in the stack creates challenges in multi-fold. Data is siloed in various storage systems, making it difficult for users and applications to find and access the data efficiently. For example, for system developers, it requires more work to integrate a new compute or storage component as a building block to work with the existing ecosystem. For data application developers, understanding and managing the correct way to access different data stores becomes more complex. For end users, accessing data from various and often remote data stores often results in performance penalty and semantics mismatch. For system admins, adding, removing, or upgrading an existing compute or data store or migrating data from one store to another can be arduous if the physical storage has been deeply coupled with all applications. 2 To address these challenges, this dissertation proposes an architecture to have a Virtual Dis- tributed File System (VDFS) as a new layer between the compute layer and the storage layer. Adding VDFS into the stack brings many benefits. Specifically, VDFS enables global data ac- cessibility for different compute frameworks, efficient in-memory data sharing and management across applications and data stores, high I/O performance and efficient use of network bandwidth, and the flexible choice of compute and storage. Meanwhile, as the layer to access data and collect data metrics and usage patterns, it also provides users insight into their data and can also be used to optimize the data access based on workloads. We achieve these goals through an implementation of VDFS called Alluxio (formerly Tachyon). Alluxio presents a set of disparate data stores as a single file system, greatly reducing the complex- ity of storage APIs, and semantics exposed to applications. Alluxio is designed with a memory centric architecture, enabling applications to leverage memory speed I/O by simply using Alluxio. Alluxio has been deployed at hundreds of leading companies in production, serving critical work- loads. Its open source community has attracted more than 800 contributors worldwide from over 200 companies. In this dissertation, we also investigate lineage as an important technique in the VDFS to im- prove the write performance, and also propose DFS-Perf, a scalable distributed file system per- formance evaluation framework to help researchers and developers better design and implement systems in the Alluxio ecosystem. i To my family ii Contents Contents ii List of Figures iv List of Tables vii 1 Introduction1 1.1 Challenges with the Existing Ecosystem....................... 3 1.2 Virtual Distributed File System (VDFS) ....................... 5 1.3 Results and Impacts Highlights............................ 6 1.4 Alluxio Ecosystem .................................. 7 1.5 Contributions ..................................... 8 1.6 Dissertation Overview................................. 8 2 Lineage in VDFS9 2.1 Introduction...................................... 9 2.2 Background...................................... 11 2.3 Design Overview ................................... 12 2.4 Checkpointing..................................... 16 2.5 Resource Allocation.................................. 21 2.6 Implementation.................................... 24 2.7 Evaluation....................................... 25 2.8 Related Work ..................................... 32 2.9 Limitations and Future Work............................. 34 2.10 Conclusion ...................................... 35 3 Distributed File System Performance Evaluation Framework 36 3.1 Introduction...................................... 36 3.2 DFS Characteristics.................................. 37 3.3 Related Work ..................................... 39 3.4 DFS-Perf Design ................................... 40 3.5 Benchmark Design .................................. 43 iii 3.6 Evaluation....................................... 49 3.7 Experience....................................... 56 3.8 Conclusion ...................................... 56 4 System Design and Implementation 58 4.1 Overview ....................................... 58 4.2 Architecture...................................... 59 4.3 Use Cases....................................... 62 4.4 Examples ....................................... 65 5 Conclusion 69 5.1 Broader Impact .................................... 69 5.2 Challenges and Future Work ............................. 70 Bibliography 72 iv List of Figures 1.1 Complex Data Ecosystem................................. 3 1.2 Virtual Distributed File System (VDFS) ......................... 4 1.3 VDFS, Alluxio as an example .............................. 6 2.1 Alluxio, formerly Tachyon, Architecture......................... 13 2.2 A lineage graph example of multiple frameworks .................... 13 2.3 A 3,000 node MapReduce cluster at Facebook...................... 19 2.4 Edge Checkpoint Example. Each node represents a file. Solid nodes denote check- pointed files, while dotted nodes denote uncheckpointed files............... 20 2.5 Resource Allocation Strategy for Priority Based Scheduler................ 22 2.6 Resource Allocation Strategy for Fair Sharing Based Scheduler. ............ 23 2.7 Alluxio, formerly Tachyon, and MemHDFS throughput comparison. On average, Al- luxio outperforms MemHDFS 110x for write throughput, and 2x for read throughput. 27 2.8 Performance comparison for realistic workflow. Each number is the average of three runs. The workflow ran 4x faster on Alluxio, formerly Tachyon, than on MemHDFS. In case of node failure, applications recovers in Alluxio around one minute and still finishes 3.8x faster. .................................... 28 2.9 Edge and fixed interval checkpoint recovery performance comparison.......... 29 2.10 Using the trace from Facebook and Bing, recomputation consumes up to 0.9% and 1.6% of the resource in the worst case respectively. ................... 31 3.1 DFS-Perf architecture. DFS-Perf adopts a master-slave model, in which the master contains a launcher and other tools to manage all slaves. For each slave, the input is the benchmark configuration, while the output is a set of evaluation results. Each slave runs multiple threads, which interact with the DFS via the File System Interface Layer. 41 3.2 DFS-Perf workflow. The master launches all slaves and distributes configurations of a benchmark to each of them. Each slave sets up and executes the benchmark inde- pendently. Finally, the master collects the statistics from all slaves and produces a test
Recommended publications
  • Copy on Write Based File Systems Performance Analysis and Implementation
    Copy On Write Based File Systems Performance Analysis And Implementation Sakis Kasampalis Kongens Lyngby 2010 IMM-MSC-2010-63 Technical University of Denmark Department Of Informatics Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk Abstract In this work I am focusing on Copy On Write based file systems. Copy On Write is used on modern file systems for providing (1) metadata and data consistency using transactional semantics, (2) cheap and instant backups using snapshots and clones. This thesis is divided into two main parts. The first part focuses on the design and performance of Copy On Write based file systems. Recent efforts aiming at creating a Copy On Write based file system are ZFS, Btrfs, ext3cow, Hammer, and LLFS. My work focuses only on ZFS and Btrfs, since they support the most advanced features. The main goals of ZFS and Btrfs are to offer a scalable, fault tolerant, and easy to administrate file system. I evaluate the performance and scalability of ZFS and Btrfs. The evaluation includes studying their design and testing their performance and scalability against a set of recommended file system benchmarks. Most computers are already based on multi-core and multiple processor architec- tures. Because of that, the need for using concurrent programming models has increased. Transactions can be very helpful for supporting concurrent program- ming models, which ensure that system updates are consistent. Unfortunately, the majority of operating systems and file systems either do not support trans- actions at all, or they simply do not expose them to the users.
    [Show full text]
  • Enhancing the Accuracy of Synthetic File System Benchmarks Salam Farhat Nova Southeastern University, [email protected]
    Nova Southeastern University NSUWorks CEC Theses and Dissertations College of Engineering and Computing 2017 Enhancing the Accuracy of Synthetic File System Benchmarks Salam Farhat Nova Southeastern University, [email protected] This document is a product of extensive research conducted at the Nova Southeastern University College of Engineering and Computing. For more information on research and degree programs at the NSU College of Engineering and Computing, please click here. Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd Part of the Computer Sciences Commons Share Feedback About This Item NSUWorks Citation Salam Farhat. 2017. Enhancing the Accuracy of Synthetic File System Benchmarks. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (1003) https://nsuworks.nova.edu/gscis_etd/1003. This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Enhancing the Accuracy of Synthetic File System Benchmarks by Salam Farhat A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy in Computer Science College of Engineering and Computing Nova Southeastern University 2017 We hereby certify that this dissertation, submitted by Salam Farhat, conforms to acceptable standards and is fully adequate in scope and quality to fulfill the dissertation requirements for the degree of Doctor of Philosophy. _____________________________________________ ________________ Gregory E. Simco, Ph.D. Date Chairperson of Dissertation Committee _____________________________________________ ________________ Sumitra Mukherjee, Ph.D. Date Dissertation Committee Member _____________________________________________ ________________ Francisco J.
    [Show full text]
  • Red Hat Data Analytics Infrastructure Solution
    TECHNOLOGY DETAIL RED HAT DATA ANALYTICS INFRASTRUCTURE SOLUTION TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................ 2 2 RED HAT DATA ANALYTICS INFRASTRUCTURE SOLUTION ..................................... 2 2.1 The evolution of analytics infrastructure ....................................................................................... 3 Give data scientists and data 2.2 Benefits of a shared data repository on Red Hat Ceph Storage .............................................. 3 analytics teams access to their own clusters without the unnec- 2.3 Solution components ...........................................................................................................................4 essary cost and complexity of 3 TESTING ENVIRONMENT OVERVIEW ............................................................................ 4 duplicating Hadoop Distributed File System (HDFS) datasets. 4 RELATIVE COST AND PERFORMANCE COMPARISON ................................................ 6 4.1 Findings summary ................................................................................................................................. 6 Rapidly deploy and decom- 4.2 Workload details .................................................................................................................................... 7 mission analytics clusters on 4.3 24-hour ingest ........................................................................................................................................8
    [Show full text]
  • Globalfs: a Strongly Consistent Multi-Site File System
    GlobalFS: A Strongly Consistent Multi-Site File System Leandro Pacheco Raluca Halalai Valerio Schiavoni University of Lugano University of Neuchatelˆ University of Neuchatelˆ Fernando Pedone Etienne Riviere` Pascal Felber University of Lugano University of Neuchatelˆ University of Neuchatelˆ Abstract consistency, availability, and tolerance to partitions. Our goal is to ensure strongly consistent file system operations This paper introduces GlobalFS, a POSIX-compliant despite node failures, at the price of possibly reduced geographically distributed file system. GlobalFS builds availability in the event of a network partition. Weak on two fundamental building blocks, an atomic multicast consistency is suitable for domain-specific applications group communication abstraction and multiple instances of where programmers can anticipate and provide resolution a single-site data store. We define four execution modes and methods for conflicts, or work with last-writer-wins show how all file system operations can be implemented resolution methods. Our rationale is that for general-purpose with these modes while ensuring strong consistency and services such as a file system, strong consistency is more tolerating failures. We describe the GlobalFS prototype in appropriate as it is both more intuitive for the users and detail and report on an extensive performance assessment. does not require human intervention in case of conflicts. We have deployed GlobalFS across all EC2 regions and Strong consistency requires ordering commands across show that the system scales geographically, providing replicas, which needs coordination among nodes at performance comparable to other state-of-the-art distributed geographically distributed sites (i.e., regions). Designing file systems for local commands and allowing for strongly strongly consistent distributed systems that provide good consistent operations over the whole system.
    [Show full text]
  • Big Data Storage Workload Characterization, Modeling and Synthetic Generation
    BIG DATA STORAGE WORKLOAD CHARACTERIZATION, MODELING AND SYNTHETIC GENERATION BY CRISTINA LUCIA ABAD DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Roy H. Campbell, Chair Professor Klara Nahrstedt Associate Professor Indranil Gupta Assistant Professor Yi Lu Dr. Ludmila Cherkasova, HP Labs Abstract A huge increase in data storage and processing requirements has lead to Big Data, for which next generation storage systems are being designed and implemented. As Big Data stresses the storage layer in new ways, a better understanding of these workloads and the availability of flexible workload generators are increas- ingly important to facilitate the proper design and performance tuning of storage subsystems like data replication, metadata management, and caching. Our hypothesis is that the autonomic modeling of Big Data storage system workloads through a combination of measurement, and statistical and machine learning techniques is feasible, novel, and useful. We consider the case of one common type of Big Data storage cluster: A cluster dedicated to supporting a mix of MapReduce jobs. We analyze 6-month traces from two large clusters at Yahoo and identify interesting properties of the workloads. We present a novel model for capturing popularity and short-term temporal correlations in object re- quest streams, and show how unsupervised statistical clustering can be used to enable autonomic type-aware workload generation that is suitable for emerging workloads. We extend this model to include other relevant properties of stor- age systems (file creation and deletion, pre-existing namespaces and hierarchical namespaces) and use the extended model to implement MimesisBench, a realistic namespace metadata benchmark for next-generation storage systems.
    [Show full text]
  • Unlock Bigdata Analytic Efficiency with Ceph Data Lake
    Unlock Bigdata Analytic Efficiency With Ceph Data Lake Jian Zhang, Yong Fu, March, 2018 Agenda . Background & Motivations . The Workloads, Reference Architecture Evolution and Performance Optimization . Performance Comparison with Remote HDFS . Summary & Next Step 3 Challenges of scaling Hadoop* Storage BOUNDED Storage and Compute resources on Hadoop Nodes brings challenges Data Capacity Silos Costs Performance & efficiency Typical Challenges Data/Capacity Multiple Storage Silos Space, Spent, Power, Utilization Upgrade Cost Inadequate Performance Provisioning And Configuration Source: 451 Research, Voice of the Enterprise: Storage Q4 2015 *Other names and brands may be claimed as the property of others. 4 Options To Address The Challenges Compute and Large Cluster More Clusters Storage Disaggregation • Lacks isolation - • Cost of • Isolation of high- noisy neighbors duplicating priority workloads hinder SLAs datasets across • Shared big • Lacks elasticity - clusters datasets rigid cluster size • Lacks on-demand • On-demand • Can’t scale provisioning provisioning compute/storage • Can’t scale • compute/storage costs separately compute/storage costs scale costs separately separately Compute and Storage disaggregation provides Simplicity, Elasticity, Isolation 5 Unified Hadoop* File System and API for cloud storage Hadoop Compatible File System abstraction layer: Unified storage API interface Hadoop fs –ls s3a://job/ adl:// oss:// s3n:// gs:// s3:// s3a:// wasb:// 2006 2008 2014 2015 2016 6 Proposal: Apache Hadoop* with disagreed Object Storage SQL …… Hadoop Services • Virtual Machine • Container • Bare Metal HCFS Compute 1 Compute 2 Compute 3 … Compute N Object Storage Services Object Object Object Object • Co-located with gateway Storage 1 Storage 2 Storage 3 … Storage N • Dynamic DNS or load balancer • Data protection via storage replication or erasure code Disaggregated Object Storage Cluster • Storage tiering *Other names and brands may be claimed as the property of others.
    [Show full text]
  • A Decentralized Cloud Storage Network Framework
    Storj: A Decentralized Cloud Storage Network Framework Storj Labs, Inc. October 30, 2018 v3.0 https://github.com/storj/whitepaper 2 Copyright © 2018 Storj Labs, Inc. and Subsidiaries This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 license (CC BY-SA 3.0). All product names, logos, and brands used or cited in this document are property of their respective own- ers. All company, product, and service names used herein are for identification purposes only. Use of these names, logos, and brands does not imply endorsement. Contents 0.1 Abstract 6 0.2 Contributors 6 1 Introduction ...................................................7 2 Storj design constraints .......................................9 2.1 Security and privacy 9 2.2 Decentralization 9 2.3 Marketplace and economics 10 2.4 Amazon S3 compatibility 12 2.5 Durability, device failure, and churn 12 2.6 Latency 13 2.7 Bandwidth 14 2.8 Object size 15 2.9 Byzantine fault tolerance 15 2.10 Coordination avoidance 16 3 Framework ................................................... 18 3.1 Framework overview 18 3.2 Storage nodes 19 3.3 Peer-to-peer communication and discovery 19 3.4 Redundancy 19 3.5 Metadata 23 3.6 Encryption 24 3.7 Audits and reputation 25 3.8 Data repair 25 3.9 Payments 26 4 4 Concrete implementation .................................... 27 4.1 Definitions 27 4.2 Peer classes 30 4.3 Storage node 31 4.4 Node identity 32 4.5 Peer-to-peer communication 33 4.6 Node discovery 33 4.7 Redundancy 35 4.8 Structured file storage 36 4.9 Metadata 39 4.10 Satellite 41 4.11 Encryption 42 4.12 Authorization 43 4.13 Audits 44 4.14 Data repair 45 4.15 Storage node reputation 47 4.16 Payments 49 4.17 Bandwidth allocation 50 4.18 Satellite reputation 53 4.19 Garbage collection 53 4.20 Uplink 54 4.21 Quality control and branding 55 5 Walkthroughs ...............................................
    [Show full text]
  • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
    Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks. In Proceedings of the ACM Symposium on Cloud Computing (SOCC '14). ACM, New York, NY, USA, Article 6 , 15 pages. As Published http://dx.doi.org/10.1145/2670979.2670985 Publisher Association for Computing Machinery (ACM) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/101090 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks Haoyuan Li Ali Ghodsi Matei Zaharia Scott Shenker Ion Stoica University of California, Berkeley MIT, Databricks University of California, Berkeley fhaoyuan,[email protected] [email protected] fshenker,[email protected] Abstract Even replicating the data in memory can lead to a signifi- cant drop in the write performance, as both the latency and Tachyon is a distributed file system enabling reliable data throughput of the network are typically much worse than sharing at memory speed across cluster computing frame- that of local memory. works. While caching today improves read workloads, Slow writes can significantly hurt the performance of job writes are either network or disk bound, as replication is pipelines, where one job consumes the output of another. used for fault-tolerance. Tachyon eliminates this bottleneck These pipelines are regularly produced by workflow man- by pushing lineage, a well-known technique, into the storage agers such as Oozie [4] and Luigi [7], e.g., to perform data layer.
    [Show full text]
  • Key Exchange Authentication Protocol for Nfs Enabled Hdfs Client
    Journal of Theoretical and Applied Information Technology 15 th April 2017. Vol.95. No 7 © 2005 – ongoing JATIT & LLS ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 KEY EXCHANGE AUTHENTICATION PROTOCOL FOR NFS ENABLED HDFS CLIENT 1NAWAB MUHAMMAD FASEEH QURESHI, 2*DONG RYEOL SHIN, 3ISMA FARAH SIDDIQUI 1,2 Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea 3 Department of Software Engineering, Mehran UET, Pakistan *Corresponding Author E-mail: [email protected], 2*[email protected], [email protected] ABSTRACT By virtue of its built-in processing capabilities for large datasets, Hadoop ecosystem has been utilized to solve many critical problems. The ecosystem consists of three components; client, Namenode and Datanode, where client is a user component that requests cluster operations through Namenode and processes data blocks at Datanode enabled with Hadoop Distributed File System (HDFS). Recently, HDFS has launched an add-on to connect a client through Network File System (NFS) that can upload and download set of data blocks over Hadoop cluster. In this way, a client is not considered as part of the HDFS and could perform read and write operations through a contrast file system. This HDFS NFS gateway has raised many security concerns, most particularly; no reliable authentication support of upload and download of data blocks, no local and remote client efficient connectivity, and HDFS mounting durability issues through untrusted connectivity. To stabilize the NFS gateway strategy, we present in this paper a Key Exchange Authentication Protocol (KEAP) between NFS enabled client and HDFS NFS gateway. The proposed approach provides cryptographic assurance of authentication between clients and gateway.
    [Show full text]
  • A Searchable-By-Content File System
    A Searchable-by-Content File System Srinath Sridhar, Jeffrey Stylos and Noam Zeilberger May 2, 2005 Abstract Indexed searching of desktop documents has recently become popular- ized by applications from Google, AOL, Yahoo!, MSN and others. How- ever, each of these is an application separate from the file system. In our project, we explore the performance tradeoffs and other issues encountered when implementing file indexing inside the file system. We developed a novel virtual-directory interface to allow application and user access to the index. In addition, we found that by deferring indexing slightly, we could coalesce file indexing tasks to reduce total work while still getting good performance. 1 Introduction Searching has always been one of the fundamental problems of computer science, and from their beginnings computer systems were designed to support and when possible automate these searches. This support ranges from the simple-minded (e.g., text editors that allow searching for keywords) to the extremely powerful (e.g., relational database query languages). But for the mundane task of per- forming searches on users’ files, available tools still leave much to be desired. For the most part, searches are limited to queries on a directory namespace—Unix shell wildcard patterns are useful for matching against small numbers of files, GNU locate for finding files in the directory hierarchy. Searches on file data are much more difficult. While from a logical point of view, grep combined with the Unix pipe mechanisms provides a nearly universal solution to content-based searches, realistically it can be used only for searching within small numbers of (small-sized) files, because of its inherent linear complexity.
    [Show full text]
  • A Semantic File System for Integrated Product Data Management', Advanced Engineering Informatics, Vol
    Citation for published version: Eck, O & Schaefer, D 2011, 'A Semantic File System for Integrated Product Data Management', Advanced Engineering Informatics, vol. 25, no. 2, pp. 177-184. https://doi.org/10.1016/j.aei.2010.08.005 DOI: 10.1016/j.aei.2010.08.005 Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Advanced Engineering Informatics 25 (2011) 177–184 Contents lists available at ScienceDirect Advanced Engineering Informatics journal homepage: www.elsevier.com/locate/aei A semantic file system for integrated product data management ⇑ Oliver Eck a, , Dirk Schaefer b a Department of Computer Science, HTWG Konstanz, Germany b Systems Realization Laboratory, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA article info abstract Article history: A mechatronic system is a synergistic integration of mechanical, electrical, electronic and software tech- Received 31 October 2009 nologies into electromechanical systems. Unfortunately, mechanical, electrical, and software data are Received in revised form 10 June 2010 often handled in separate Product Data Management (PDM) systems with no automated sharing of data Accepted 17 August 2010 between them or links between their data.
    [Show full text]
  • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
    Discretized Streams: Fault-Tolerant Streaming Computation at Scale" Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica University of California, Berkeley Published in SOSP ‘13 Slide 1/30 Motivation" • Faults and stragglers inevitable in large clusters running “big data” applications. • Streaming applications must recover from these quickly. • Current distributed streaming systems, including Storm, TimeStream, MapReduce Online provide fault recovery in an expensive manner. – Involves hot replication which requires 2x hardware or upstream backup which has long recovery time. Slide 2/30 Previous Methods" • Hot replication – two copies of each node, 2x hardware. – straggler will slow down both replicas. • Upstream backup – nodes buffer sent messages and replay them to new node. – stragglers are treated as failures resulting in long recovery step. • Conclusion : need for a system which overcomes these challenges Slide 3/30 • Voila ! D-Streams Slide 4/30 Computation Model" • Streaming computations treated as a series of deterministic batch computations on small time intervals. • Data received in each interval is stored reliably across the cluster to form input datatsets • At the end of each interval dataset is subjected to deterministic parallel operations and two things can happen – new dataset representing program output which is pushed out to stable storage – intermediate state stored as resilient distributed datasets (RDDs) Slide 5/30 D-Stream processing model" Slide 6/30 What are D-Streams ?" • sequence of immutable, partitioned datasets (RDDs) that can be acted on by deterministic transformations • transformations yield new D-Streams, and may create intermediate state in the form of RDDs • Example :- – pageViews = readStream("http://...", "1s") – ones = pageViews.map(event => (event.url, 1)) – counts = ones.runningReduce((a, b) => a + b) Slide 7/30 High-level overview of Spark Streaming system" Slide 8/30 Recovery" • D-Streams & RDDs track their lineage, that is, the graph of deterministic operations used to build them.
    [Show full text]