Glasgow Math. J. 49 (2007) 449–467. C 2007 Glasgow Mathematical Journal Trust. doi:10.1017/S0017089507003801. Printed in the United Kingdom NON-TAME AUTOMORPHISMS OF A FREE GROUP OF RANK 3 IN ApA A. I. PAPISTAS Department of Mathematics, Aristotle University of Thessaloniki, GR 541 24, Thessaloniki, Greece e-mail:
[email protected] (Received 5 May, 2006; revised 25 April, 2007; accepted 5 June, 2007) TO PROFESSOR ROGER BRYANT ON HIS 60th BIRTHDAY Abstract. We give a way of constructing non-tame automorphisms of a free group of rank 3 in the variety ApA, with p prime. 2000 Mathematics Subject Classification. 20F28, 20H25 1. Introduction. For any group G,wewriteG for the derived group of G.Let IA(G) denote the kernel of the natural mapping from Aut(G) into Aut(G/G). The elements of IA(G) are called IA-automorphisms of G. For a positive integer n, with n ≥ 2, let Fn be a free group of rank n with a basis (in other words, a free generating set) { f1,...,fn}. For any variety of groups V,letV(Fn) denote the verbal subgroup of Fn corresponding to V. Also, let Fn(V) = Fn/V(Fn): thus Fn(V) is a relatively free group of rank n and it has a basis {x1,...,xn},wherexi = fiV(Fn), i = 1,...,n.Ifφ is an automorphism of Fn(V) then {x1φ,...,xnφ} is also a basis of Fn(V) and every basis of Fn(V) has this form. (For information concerning relatively free groups and varieties of groups see [14].) Since V(Fn) is a characteristic subgroup of Fn, every automorphism ϕ of Fn induces an automorphism ϕ of Fn(V) in which xiϕ = ( fiϕ)V(Fn)fori = 1,...,n.