Words: Notes on Verbal Width in Groups, by Dan Segal, London Mathematical Society Lecture Note Series, Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filling Functions Notes for an Advanced Course on the Geometry of the Word Problem for Finitely Generated Groups Centre De Recer
Filling Functions Notes for an advanced course on The Geometry of the Word Problem for Finitely Generated Groups Centre de Recerca Mathematica` Barcelona T.R.Riley July 2005 Revised February 2006 Contents Notation vi 1Introduction 1 2Fillingfunctions 5 2.1 Van Kampen diagrams . 5 2.2 Filling functions via van Kampen diagrams . .... 6 2.3 Example: combable groups . 10 2.4 Filling functions interpreted algebraically . ......... 15 2.5 Filling functions interpreted computationally . ......... 16 2.6 Filling functions for Riemannian manifolds . ...... 21 2.7 Quasi-isometry invariance . .22 3Relationshipsbetweenfillingfunctions 25 3.1 The Double Exponential Theorem . 26 3.2 Filling length and duality of spanning trees in planar graphs . 31 3.3 Extrinsic diameter versus intrinsic diameter . ........ 35 3.4 Free filling length . 35 4Example:nilpotentgroups 39 4.1 The Dehn and filling length functions . .. 39 4.2 Open questions . 42 5Asymptoticcones 45 5.1 The definition . 45 5.2 Hyperbolic groups . 47 5.3 Groups with simply connected asymptotic cones . ...... 53 5.4 Higher dimensions . 57 Bibliography 68 v Notation f, g :[0, ∞) → [0, ∞)satisfy f ≼ g when there exists C > 0 such that f (n) ≤ Cg(Cn+ C) + Cn+ C for all n,satisfy f ≽ g ≼, ≽, ≃ when g ≼ f ,andsatisfy f ≃ g when f ≼ g and g ≼ f .These relations are extended to functions f : N → N by considering such f to be constant on the intervals [n, n + 1). ab, a−b,[a, b] b−1ab, b−1a−1b, a−1b−1ab Cay1(G, X) the Cayley graph of G with respect to a generating set X Cay2(P) the Cayley 2-complex of a -
Free and Linear Representations of Outer Automorphism Groups of Free Groups
Free and linear representations of outer automorphism groups of free groups Dawid Kielak Magdalen College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2012 This thesis is dedicated to Magda Acknowledgements First and foremost the author wishes to thank his supervisor, Martin R. Bridson. The author also wishes to thank the following people: his family, for their constant support; David Craven, Cornelia Drutu, Marc Lackenby, for many a helpful conversation; his office mates. Abstract For various values of n and m we investigate homomorphisms Out(Fn) ! Out(Fm) and Out(Fn) ! GLm(K); i.e. the free and linear representations of Out(Fn) respectively. By means of a series of arguments revolving around the representation theory of finite symmetric subgroups of Out(Fn) we prove that each ho- momorphism Out(Fn) ! GLm(K) factors through the natural map ∼ πn : Out(Fn) ! GL(H1(Fn; Z)) = GLn(Z) whenever n = 3; m < 7 and char(K) 62 f2; 3g, and whenever n + 1 n > 5; m < 2 and char(K) 62 f2; 3; : : : ; n + 1g: We also construct a new infinite family of linear representations of Out(Fn) (where n > 2), which do not factor through πn. When n is odd these have the smallest dimension among all known representations of Out(Fn) with this property. Using the above results we establish that the image of every homomor- phism Out(Fn) ! Out(Fm) is finite whenever n = 3 and n < m < 6, and n of cardinality at most 2 whenever n > 5 and n < m < 2 . -
Combinatorial Group Theory
Combinatorial Group Theory Charles F. Miller III 7 March, 2004 Abstract An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated and expanded many times for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2004 by C. F. Miller III. Contents 1 Preliminaries 3 1.1 About groups . 3 1.2 About fundamental groups and covering spaces . 5 2 Free groups and presentations 11 2.1 Free groups . 12 2.2 Presentations by generators and relations . 16 2.3 Dehn’s fundamental problems . 19 2.4 Homomorphisms . 20 2.5 Presentations and fundamental groups . 22 2.6 Tietze transformations . 24 2.7 Extraction principles . 27 3 Construction of new groups 30 3.1 Direct products . 30 3.2 Free products . 32 3.3 Free products with amalgamation . 36 3.4 HNN extensions . 43 3.5 HNN related to amalgams . 48 3.6 Semi-direct products and wreath products . 50 4 Properties, embeddings and examples 53 4.1 Countable groups embed in 2-generator groups . 53 4.2 Non-finite presentability of subgroups . 56 4.3 Hopfian and residually finite groups . 58 4.4 Local and poly properties . 61 4.5 Finitely presented coherent by cyclic groups . 63 1 5 Subgroup Theory 68 5.1 Subgroups of Free Groups . 68 5.1.1 The general case . 68 5.1.2 Finitely generated subgroups of free groups . -
On the Verbal Width of Finitely Generated Pro-P Groups
On the verbal width of finitely generated pro-p groups A. Jaikin-Zapirain ∗ Abstract Let p be a prime. It is proved that a non-trivial word w from a free group F has finite width in every finitely generated pro-p group if and only if w 6∈ (F 0)pF 00. Also it is shown that any word w has finite width in a compact p-adic group. 1 Introduction Let F be a free group on k independent generators. We will call an element w from F a word. If G is a group, then we say that g ∈ G is a w-value in G if ±1 there are g1, . , gk ∈ G such that g = w(g1, . , gk) . We denote the set of the all w-values in G by G{w}. A simple argument (see [6]) shows that if G is profinite, then w(G) (the abstract subgroup generated by G{w}) is closed if and only if there exists l such that any element from w(G) is a product of at most l elements from G{w}. The smallest such number l is called the width of w in G. In this paper we consider a particular case of the following question: which words do have finite width in a finitely generated profinite group G ? The most important achievement in this subject is a recent work of N. Nikolov and D. Segal (see [13]), where they proved that if w is either d-locally finite or w is a simple commutator, then w has finite width in any d-generated profinite group G (we recall that a group word w is d-locally finite if every d-generator group H satisfying w(H) = 1 is finite). -
Arxiv:2008.04791V1 [Math.GR] 11 Aug 2020 Oecnann E Hc Tefi Saleog”.Tkna Broad a at Taken Ide the Enough”)
SUFFICIENT CONDITIONS FOR A GROUP OF HOMEOMORPHISMS OF THE CANTOR SET TO BE TWO-GENERATED COLLIN BLEAK, LUKE ELLIOTT, AND JAMES HYDE Abstract. Let C be some Cantor space. We study groups of homeomorphisms of C which are vigorous, or, which are flawless, where we introduce both of these terms here. We say a group G ≤ Homeo(C) is vigorous if for any clopen set A and proper clopen subsets B and C of A there is γ ∈ G in the pointwise-stabiliser of C\A with Bγ ⊆ C. Being vigorous is similar in impact to some of the conditions pro- posed by Epstein in his proof that certain groups of homeomorphisms of spaces have simple commutator subgroups (and/or related conditions, as proposed in some of the work of Matui or of Ling). A non-trivial group G ≤ Homeo(C) is flawless if for all k and w a non-trivial freely reduced product expression on k variables (including inverse symbols), a particular subgroup w(G)◦ of the verbal subgroup w(G) is the whole group. It is true, for instance, that flawless groups are both perfect and lawless. We show: 1) simple vigorous groups are either two-generated by torsion ele- ments, or not finitely generated, 2) vigorous groups are simple if and only if they are flawless, and, 3) the class of vigorous simple subgroups of Homeo(C) is fairly broad (it contains many well known groups such as the commutator subgroups of the Higman-Thompson groups Gn,r, the Brin-Thompson groups nV , R¨over’s group V (Γ), and others of Nekrashevych’s ‘simple groups of dynamical origin’, and, the class is closed under various natural constructions). -
Myasnikov.1.Free.Groups.Pdf
Free groups Contents 1 Free groups 1 1.1 De¯nitions and notations . 1 1.2 Construction of a free group with basis X ........... 2 1.3 The universal property of free groups. 6 1.4 Presentations of groups . 8 1.5 Rank of free groups . 9 1 Free groups 1.1 De¯nitions and notations Let G be a group. If H is a subgroup of G then we write H · G; if H is a normal subgroup of G we write H E G. For a subset A ⊆ G by hAi we denote the subgroup of G generated by A (the intersection of all subgroups of G containing A). It is easy to see that "1 "n hAi = fai1 ; : : : ; ain j aij 2 A; "j 2 f1; ¡1g; n 2 Ng "1 "n To treat expressions like ai1 ; : : : ; ain a little bit more formally we need some terminology. Let X be an arbitrary set. A word in X is a ¯nite sequence of elements (perhaps, empty) w which we write as w = y1 : : : yn ( yi 2 X). The number n is called the length of the word w, we denote it by jwj. We denote the empty word by ² and put j²j = 0. Consider X¡1 = fx¡1jx 2 Xg; where x¡1 is just a formal expression obtained from x and ¡1. If x 2 X then the symbols x and x¡1 are called literals in X. Denote by X§1 = X [ X¡1 1 2 the set of all literals in X. For a literal y 2 X§1 we de¯ne y¡1 as ½ x¡1; if y = x 2 X; y¡1 = x; if y = x¡1 2 X. -
On Finitely Generated Profinite Groups, I 173
Annals of Mathematics, 165 (2007), 171–238 On finitely generated profinite groups, I: strong completeness and uniform bounds By Nikolay Nikolov* and Dan Segal Abstract We prove that in every finitely generated profinite group, every subgroup of finite index is open; this implies that the topology on such groups is deter- mined by the algebraic structure. This is deduced from the main result about finite groups: let w be a ‘locally finite’ group word and d ∈ N. Then there exists f = f(w, d) such that in every d-generator finite group G, every element of the verbal subgroup w(G) is equal to a product of fw-values. An analogous theorem is proved for commutators; this implies that in every finitely generated profinite group, each term of the lower central series is closed. The proofs rely on some properties of the finite simple groups, to be established in Part II. Contents 1. Introduction 2. The Key Theorem 3. Variations on a theme 4. Proof of the Key Theorem 5. The first inequality: lifting generators 6. Exterior squares and quadratic maps 7. The second inequality, soluble case 8. Word combinatorics 9. Equations in semisimple groups, 1: the second inequality 10. Equations in semisimple groups, 2: powers 11. Equations in semisimple groups, 3: twisted commutators *Work done while the first author held a Golda-Meir Fellowship at the Hebrew University of Jerusalem. 172 NIKOLAY NIKOLOV AND DAN SEGAL 1. Introduction A profinite group G is the inverse limit of some inverse system of finite groups. Thus it is a compact, totally disconnected topological group; prop- erties of the original system of finite groups are reflected in properties of the topological group G. -
Save Pdf (0.19
Glasgow Math. J. 49 (2007) 449–467. C 2007 Glasgow Mathematical Journal Trust. doi:10.1017/S0017089507003801. Printed in the United Kingdom NON-TAME AUTOMORPHISMS OF A FREE GROUP OF RANK 3 IN ApA A. I. PAPISTAS Department of Mathematics, Aristotle University of Thessaloniki, GR 541 24, Thessaloniki, Greece e-mail: [email protected] (Received 5 May, 2006; revised 25 April, 2007; accepted 5 June, 2007) TO PROFESSOR ROGER BRYANT ON HIS 60th BIRTHDAY Abstract. We give a way of constructing non-tame automorphisms of a free group of rank 3 in the variety ApA, with p prime. 2000 Mathematics Subject Classification. 20F28, 20H25 1. Introduction. For any group G,wewriteG for the derived group of G.Let IA(G) denote the kernel of the natural mapping from Aut(G) into Aut(G/G). The elements of IA(G) are called IA-automorphisms of G. For a positive integer n, with n ≥ 2, let Fn be a free group of rank n with a basis (in other words, a free generating set) { f1,...,fn}. For any variety of groups V,letV(Fn) denote the verbal subgroup of Fn corresponding to V. Also, let Fn(V) = Fn/V(Fn): thus Fn(V) is a relatively free group of rank n and it has a basis {x1,...,xn},wherexi = fiV(Fn), i = 1,...,n.Ifφ is an automorphism of Fn(V) then {x1φ,...,xnφ} is also a basis of Fn(V) and every basis of Fn(V) has this form. (For information concerning relatively free groups and varieties of groups see [14].) Since V(Fn) is a characteristic subgroup of Fn, every automorphism ϕ of Fn induces an automorphism ϕ of Fn(V) in which xiϕ = ( fiϕ)V(Fn)fori = 1,...,n. -
Groups with Two Generators Having Unsolvable Word Problem and Presentations of Mihailova Subgroups
Groups With Two Generators Having Unsolvable Word Problem And Presentations of Mihailova Subgroups Xiaofeng Wang, Chen Xu, Guo Li,∗ and Hanling Lin School of Mathematics, Shenzhen University Shenzhen 518060, P. R. China Abstract. A presentation of a group with two generators having unsolvable word problem and an explicit countable presentation of Mihailova subgroup of F2 × F2 with finite number of generators are given. Where Mihailova subgroup of F2 × F2 enjoys the unsolvable subgroup membership problem. One then can use the presentation to create entities' private keys in a public key cryptsystem. Key words: word problem, subgroup membership problem, Mihailova subgroup, insolvability 1 Introduction In 1997, Shor published in [37] his distinguished quantum computational algorithms and he pointed out in this paper that with his algorithms the factorization of an integer and the computation of discrete logarithm are computable in a polynomial time. Therefore, the most used public key cryptsystems (such as RSA, ECC, et cetera) are really in jeopardy since people believe that quantum computers or quantum computation systems are in fact not far from the reality. Therefore, one of the most urgent task for the cryptologists is to find new public key cryptsystems which are much more safe and free of the quantum computational attack. In the last decade, due to the works done by Anshel et al[1], and Ko et al[24], the decision problems from combinatorial group theory (i.e. the conjugacy search problem, the decomposition problem, the root extraction search problem, and the subgroup membership problem) have been intensively employed as the core for the establishment of alleged secure and effective cryptographic primitives. -
Arxiv:2002.02541V2 [Math.GR] 2 Nov 2020 H Pcfiiiso Ntl Rsne Groups
COMPUTABILITY OF FINITE QUOTIENTS OF FINITELY GENERATED GROUPS EMMANUEL RAUZY Abstract. We study systematically groups whose marked finite quotients form a recursive set. We give several definitions, and prove basic properties of this class of groups, and in particular emphasize the link between the growth of the depth function and solvability of the word problem. We give examples of infinitely presented groups whose finite quotients can be effectively enumer- ated. Finally, our main result is that a residually finite group can be even not recursively presented and still have computable finite quotients, and that, on the other hand, it can have solvable word problem while still not having computable finite quotients. Introduction The fact that several well known conjectures which have been solved for countable groups remain open for finitely presented groups, such as the Burnside problem, or the existence of groups of intermediate growth, shows that little is known about the specificities of finitely presented groups. One of the most striking results that affects specifically finitely presented groups is McKinsey’s theorem : finitely presented residually finite groups must have solv- able word problem. (McKinsey’s theorem, which appeared in [19], is in fact set in a more general setting than that of finitely presented residually finite groups, we are only interested in its group theoretical version, which was first made ex- plicit by Mal’cev in [18], followed by Dyson in [7] and by Mostoswski in [21].) The proof of this theorem hinges on the fact that the finite quotients of a finitely pre- sented group can be enumerated. -
Generalizing Magnus' Characterization of Free Groups to Some Free Products
Generalizing Magnus’ characterization of free groups to some free products 1 Generalizing Magnus’ characterization of free groups to some free products Khalid Bou-Rabee∗ and Brandon Seward† April 16, 2011 Abstract A residually nilpotent group is k-parafree if all of its lower central series quotients match those of a free group of rank k. Magnus proved that k-parafree groups of rank k are themselves free. In this note we mimic this theory with finite extensions of free groups, with an emphasis on free products of the cyclic group Cp, for p an odd prime. We show that for n ≤ p Magnus’ ∗n characterization holds for the n-fold free product Cp within the class of finite-extensions of free groups. Specifically, if n ≤ p and G is a finitely generated, virtually free, residually nilpotent ∗n ∼ ∗n group having the same lower central series quotients as Cp , then G =Cp . We also show that such a characterization does not hold in the class of finitely generated groups. That is, we construct a rank 2 residually nilpotent group G that shares all its lower central series quotients with Cp ∗Cp, but is not Cp ∗Cp. keywords: parafree, lower central series, free products, residually nilpotent. Introduction Let Cm be the cyclic group of order m. This note addresses whether free products of the form ∗n Cp ∗Cp ∗ ··· ∗Cp, denoted Cp for short, can be characterized by their lower central series quotients. Recall that the lower central series of a group G is defined to be g1(G) := G and gk(G) := [G;gk−1(G)] for k ≥ 2; where [A;B] denotes the group generated by commutators of elements of A with elements of B. -
Suitable for All Ages
WHAT IS A DEHN FUNCTION? TIMOTHY RILEY 1. The size of a jigsaw puzzle 1.1. Jigsaw puzzles reimagined. I will describe jigsaw puzzles that are somewhat different to the familiar kind. A box, shown in Figure 1, con- tains an infinite supply of the three types of pieces pictured on its side: one five–sided and two four–sided, their edges coloured green, blue and red and directed by arrows. It also holds an infinite supply of red, green and blue rods, again directed by arrows. R. E. pen Kam van . Sui & Co table for v an E. al Ka R. l a & C mpe o. ges n Figure 1. A puzzle kit. A good strategy for solving a standard jigsaw puzzle is first to assemble the pieces that make up its boundary, and then fill the interior. In our jigsaw Date: July 13, 2012. The author gratefully acknowledges partial support from NSF grant DMS–1101651 and from Simons Foundation Collaboration Grant 208567. He also thanks Margarita Am- chislavska, Costandino Moraites, and Kristen Pueschel for careful readings of drafts of this chapter, and the editors Matt Clay and Dan Margalit for many helpful suggestions. 1 2 TIMOTHYRILEY puzzles the boundary, a circle of coloured rods end–to–end on a table top, is the starting point. A list, such as that in Figure 2, of boundaries that will make for good puzzles is supplied. 1. 2. 3. 4. 5. 6. 7. 8. Figure 2. A list of puzzles accompanying the puzzle kit shown in Figure 1. The aim of thepuzzle istofill theinteriorof the circle withthe puzzle pieces in such a way that the edges of the pieces match up in colour and in the di- rection of the arrows.